| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( _om X. { X } ) = ( _om X. { X } ) | 
						
							| 2 |  | omex |  |-  _om e. _V | 
						
							| 3 |  | snex |  |-  { X } e. _V | 
						
							| 4 | 2 3 | xpex |  |-  ( _om X. { X } ) e. _V | 
						
							| 5 |  | eqeq1 |  |-  ( a = ( _om X. { X } ) -> ( a = ( _om X. { X } ) <-> ( _om X. { X } ) = ( _om X. { X } ) ) ) | 
						
							| 6 | 4 5 | spcev |  |-  ( ( _om X. { X } ) = ( _om X. { X } ) -> E. a a = ( _om X. { X } ) ) | 
						
							| 7 | 1 6 | mp1i |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> E. a a = ( _om X. { X } ) ) | 
						
							| 8 | 3 2 | pm3.2i |  |-  ( { X } e. _V /\ _om e. _V ) | 
						
							| 9 |  | elmapg |  |-  ( ( { X } e. _V /\ _om e. _V ) -> ( a e. ( { X } ^m _om ) <-> a : _om --> { X } ) ) | 
						
							| 10 | 8 9 | mp1i |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a e. ( { X } ^m _om ) <-> a : _om --> { X } ) ) | 
						
							| 11 |  | fconst2g |  |-  ( X e. V -> ( a : _om --> { X } <-> a = ( _om X. { X } ) ) ) | 
						
							| 12 | 11 | 3ad2ant3 |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a : _om --> { X } <-> a = ( _om X. { X } ) ) ) | 
						
							| 13 | 10 12 | bitrd |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a e. ( { X } ^m _om ) <-> a = ( _om X. { X } ) ) ) | 
						
							| 14 | 13 | exbidv |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( E. a a e. ( { X } ^m _om ) <-> E. a a = ( _om X. { X } ) ) ) | 
						
							| 15 | 7 14 | mpbird |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> E. a a e. ( { X } ^m _om ) ) | 
						
							| 16 |  | neq0 |  |-  ( -. ( { X } ^m _om ) = (/) <-> E. a a e. ( { X } ^m _om ) ) | 
						
							| 17 | 15 16 | sylibr |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( { X } ^m _om ) = (/) ) | 
						
							| 18 |  | eqcom |  |-  ( ( { X } ^m _om ) = (/) <-> (/) = ( { X } ^m _om ) ) | 
						
							| 19 | 17 18 | sylnib |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. (/) = ( { X } ^m _om ) ) | 
						
							| 20 |  | ovex |  |-  ( I e.g J ) e. _V | 
						
							| 21 | 3 20 | pm3.2i |  |-  ( { X } e. _V /\ ( I e.g J ) e. _V ) | 
						
							| 22 |  | prv |  |-  ( ( { X } e. _V /\ ( I e.g J ) e. _V ) -> ( { X } |= ( I e.g J ) <-> ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) ) ) | 
						
							| 23 | 21 22 | mp1i |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } |= ( I e.g J ) <-> ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) ) ) | 
						
							| 24 |  | goel |  |-  ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) = <. (/) , <. I , J >. >. ) | 
						
							| 25 |  | 0ex |  |-  (/) e. _V | 
						
							| 26 | 25 | snid |  |-  (/) e. { (/) } | 
						
							| 27 | 26 | a1i |  |-  ( ( I e. _om /\ J e. _om ) -> (/) e. { (/) } ) | 
						
							| 28 |  | opelxpi |  |-  ( ( I e. _om /\ J e. _om ) -> <. I , J >. e. ( _om X. _om ) ) | 
						
							| 29 | 27 28 | opelxpd |  |-  ( ( I e. _om /\ J e. _om ) -> <. (/) , <. I , J >. >. e. ( { (/) } X. ( _om X. _om ) ) ) | 
						
							| 30 | 24 29 | eqeltrd |  |-  ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) e. ( { (/) } X. ( _om X. _om ) ) ) | 
						
							| 31 |  | fmla0xp |  |-  ( Fmla ` (/) ) = ( { (/) } X. ( _om X. _om ) ) | 
						
							| 32 | 30 31 | eleqtrrdi |  |-  ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) e. ( Fmla ` (/) ) ) | 
						
							| 33 | 32 | 3adant3 |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( I e.g J ) e. ( Fmla ` (/) ) ) | 
						
							| 34 |  | satefvfmla0 |  |-  ( ( { X } e. _V /\ ( I e.g J ) e. ( Fmla ` (/) ) ) -> ( { X } SatE ( I e.g J ) ) = { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } ) | 
						
							| 35 | 3 33 34 | sylancr |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } SatE ( I e.g J ) ) = { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } ) | 
						
							| 36 | 24 | fveq2d |  |-  ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( I e.g J ) ) = ( 2nd ` <. (/) , <. I , J >. >. ) ) | 
						
							| 37 |  | opex |  |-  <. I , J >. e. _V | 
						
							| 38 | 25 37 | op2nd |  |-  ( 2nd ` <. (/) , <. I , J >. >. ) = <. I , J >. | 
						
							| 39 | 36 38 | eqtrdi |  |-  ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( I e.g J ) ) = <. I , J >. ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( I e. _om /\ J e. _om ) -> ( 1st ` ( 2nd ` ( I e.g J ) ) ) = ( 1st ` <. I , J >. ) ) | 
						
							| 41 |  | op1stg |  |-  ( ( I e. _om /\ J e. _om ) -> ( 1st ` <. I , J >. ) = I ) | 
						
							| 42 | 40 41 | eqtrd |  |-  ( ( I e. _om /\ J e. _om ) -> ( 1st ` ( 2nd ` ( I e.g J ) ) ) = I ) | 
						
							| 43 | 42 | fveq2d |  |-  ( ( I e. _om /\ J e. _om ) -> ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) = ( a ` I ) ) | 
						
							| 44 | 39 | fveq2d |  |-  ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( 2nd ` ( I e.g J ) ) ) = ( 2nd ` <. I , J >. ) ) | 
						
							| 45 |  | op2ndg |  |-  ( ( I e. _om /\ J e. _om ) -> ( 2nd ` <. I , J >. ) = J ) | 
						
							| 46 | 44 45 | eqtrd |  |-  ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( 2nd ` ( I e.g J ) ) ) = J ) | 
						
							| 47 | 46 | fveq2d |  |-  ( ( I e. _om /\ J e. _om ) -> ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) = ( a ` J ) ) | 
						
							| 48 | 43 47 | eleq12d |  |-  ( ( I e. _om /\ J e. _om ) -> ( ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) <-> ( a ` I ) e. ( a ` J ) ) ) | 
						
							| 49 | 48 | rabbidv |  |-  ( ( I e. _om /\ J e. _om ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } ) | 
						
							| 50 | 49 | 3adant3 |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } ) | 
						
							| 51 |  | elmapi |  |-  ( a e. ( { X } ^m _om ) -> a : _om --> { X } ) | 
						
							| 52 |  | elirr |  |-  -. X e. X | 
						
							| 53 |  | fvconst |  |-  ( ( a : _om --> { X } /\ I e. _om ) -> ( a ` I ) = X ) | 
						
							| 54 | 53 | 3ad2antr1 |  |-  ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( a ` I ) = X ) | 
						
							| 55 |  | fvconst |  |-  ( ( a : _om --> { X } /\ J e. _om ) -> ( a ` J ) = X ) | 
						
							| 56 | 55 | 3ad2antr2 |  |-  ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( a ` J ) = X ) | 
						
							| 57 | 54 56 | eleq12d |  |-  ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( ( a ` I ) e. ( a ` J ) <-> X e. X ) ) | 
						
							| 58 | 52 57 | mtbiri |  |-  ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> -. ( a ` I ) e. ( a ` J ) ) | 
						
							| 59 | 58 | ex |  |-  ( a : _om --> { X } -> ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( a ` I ) e. ( a ` J ) ) ) | 
						
							| 60 | 51 59 | syl |  |-  ( a e. ( { X } ^m _om ) -> ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( a ` I ) e. ( a ` J ) ) ) | 
						
							| 61 | 60 | impcom |  |-  ( ( ( I e. _om /\ J e. _om /\ X e. V ) /\ a e. ( { X } ^m _om ) ) -> -. ( a ` I ) e. ( a ` J ) ) | 
						
							| 62 | 61 | ralrimiva |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> A. a e. ( { X } ^m _om ) -. ( a ` I ) e. ( a ` J ) ) | 
						
							| 63 |  | rabeq0 |  |-  ( { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } = (/) <-> A. a e. ( { X } ^m _om ) -. ( a ` I ) e. ( a ` J ) ) | 
						
							| 64 | 62 63 | sylibr |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } = (/) ) | 
						
							| 65 | 50 64 | eqtrd |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = (/) ) | 
						
							| 66 | 35 65 | eqtrd |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } SatE ( I e.g J ) ) = (/) ) | 
						
							| 67 | 66 | eqeq1d |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) <-> (/) = ( { X } ^m _om ) ) ) | 
						
							| 68 | 23 67 | bitrd |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } |= ( I e.g J ) <-> (/) = ( { X } ^m _om ) ) ) | 
						
							| 69 | 19 68 | mtbird |  |-  ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. { X } |= ( I e.g J ) ) |