| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ps1.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | ps1.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | ps1.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | oveq1 |  |-  ( R = P -> ( R .\/ S ) = ( P .\/ S ) ) | 
						
							| 5 | 4 | breq2d |  |-  ( R = P -> ( ( P .\/ Q ) .<_ ( R .\/ S ) <-> ( P .\/ Q ) .<_ ( P .\/ S ) ) ) | 
						
							| 6 | 4 | eqeq2d |  |-  ( R = P -> ( ( P .\/ Q ) = ( R .\/ S ) <-> ( P .\/ Q ) = ( P .\/ S ) ) ) | 
						
							| 7 | 5 6 | imbi12d |  |-  ( R = P -> ( ( ( P .\/ Q ) .<_ ( R .\/ S ) -> ( P .\/ Q ) = ( R .\/ S ) ) <-> ( ( P .\/ Q ) .<_ ( P .\/ S ) -> ( P .\/ Q ) = ( P .\/ S ) ) ) ) | 
						
							| 8 | 7 | eqcoms |  |-  ( P = R -> ( ( ( P .\/ Q ) .<_ ( R .\/ S ) -> ( P .\/ Q ) = ( R .\/ S ) ) <-> ( ( P .\/ Q ) .<_ ( P .\/ S ) -> ( P .\/ Q ) = ( P .\/ S ) ) ) ) | 
						
							| 9 |  | simp3 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R /\ ( P .\/ Q ) .<_ ( R .\/ S ) ) -> ( P .\/ Q ) .<_ ( R .\/ S ) ) | 
						
							| 10 |  | simp1 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> K e. HL ) | 
						
							| 11 |  | simp21 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> P e. A ) | 
						
							| 12 |  | simp3l |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> R e. A ) | 
						
							| 13 | 2 3 | hlatjcom |  |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) = ( R .\/ P ) ) | 
						
							| 14 | 10 11 12 13 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( P .\/ R ) = ( R .\/ P ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R /\ ( P .\/ Q ) .<_ ( R .\/ S ) ) -> ( P .\/ R ) = ( R .\/ P ) ) | 
						
							| 16 |  | hllat |  |-  ( K e. HL -> K e. Lat ) | 
						
							| 17 | 16 | 3ad2ant1 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> K e. Lat ) | 
						
							| 18 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 19 | 18 3 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 20 | 11 19 | syl |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> P e. ( Base ` K ) ) | 
						
							| 21 |  | simp22 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> Q e. A ) | 
						
							| 22 | 18 3 | atbase |  |-  ( Q e. A -> Q e. ( Base ` K ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> Q e. ( Base ` K ) ) | 
						
							| 24 |  | simp3r |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> S e. A ) | 
						
							| 25 | 18 2 3 | hlatjcl |  |-  ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) | 
						
							| 26 | 10 12 24 25 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( R .\/ S ) e. ( Base ` K ) ) | 
						
							| 27 | 18 1 2 | latjle12 |  |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( R .\/ S ) /\ Q .<_ ( R .\/ S ) ) <-> ( P .\/ Q ) .<_ ( R .\/ S ) ) ) | 
						
							| 28 | 17 20 23 26 27 | syl13anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .<_ ( R .\/ S ) /\ Q .<_ ( R .\/ S ) ) <-> ( P .\/ Q ) .<_ ( R .\/ S ) ) ) | 
						
							| 29 |  | simpl |  |-  ( ( P .<_ ( R .\/ S ) /\ Q .<_ ( R .\/ S ) ) -> P .<_ ( R .\/ S ) ) | 
						
							| 30 | 28 29 | biimtrrdi |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .<_ ( R .\/ S ) -> P .<_ ( R .\/ S ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> ( ( P .\/ Q ) .<_ ( R .\/ S ) -> P .<_ ( R .\/ S ) ) ) | 
						
							| 32 |  | simpl1 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> K e. HL ) | 
						
							| 33 |  | simpl21 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> P e. A ) | 
						
							| 34 |  | simpl3r |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> S e. A ) | 
						
							| 35 |  | simpl3l |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> R e. A ) | 
						
							| 36 |  | simpr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> P =/= R ) | 
						
							| 37 | 1 2 3 | hlatexchb1 |  |-  ( ( K e. HL /\ ( P e. A /\ S e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( R .\/ S ) <-> ( R .\/ P ) = ( R .\/ S ) ) ) | 
						
							| 38 | 32 33 34 35 36 37 | syl131anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> ( P .<_ ( R .\/ S ) <-> ( R .\/ P ) = ( R .\/ S ) ) ) | 
						
							| 39 | 31 38 | sylibd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> ( ( P .\/ Q ) .<_ ( R .\/ S ) -> ( R .\/ P ) = ( R .\/ S ) ) ) | 
						
							| 40 | 39 | 3impia |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R /\ ( P .\/ Q ) .<_ ( R .\/ S ) ) -> ( R .\/ P ) = ( R .\/ S ) ) | 
						
							| 41 | 15 40 | eqtrd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R /\ ( P .\/ Q ) .<_ ( R .\/ S ) ) -> ( P .\/ R ) = ( R .\/ S ) ) | 
						
							| 42 | 9 41 | breqtrrd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R /\ ( P .\/ Q ) .<_ ( R .\/ S ) ) -> ( P .\/ Q ) .<_ ( P .\/ R ) ) | 
						
							| 43 | 42 | 3expia |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> ( ( P .\/ Q ) .<_ ( R .\/ S ) -> ( P .\/ Q ) .<_ ( P .\/ R ) ) ) | 
						
							| 44 | 18 2 3 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) ) | 
						
							| 45 | 10 11 12 44 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( P .\/ R ) e. ( Base ` K ) ) | 
						
							| 46 | 18 1 2 | latjle12 |  |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( P .\/ R ) /\ Q .<_ ( P .\/ R ) ) <-> ( P .\/ Q ) .<_ ( P .\/ R ) ) ) | 
						
							| 47 | 17 20 23 45 46 | syl13anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .<_ ( P .\/ R ) /\ Q .<_ ( P .\/ R ) ) <-> ( P .\/ Q ) .<_ ( P .\/ R ) ) ) | 
						
							| 48 |  | simpr |  |-  ( ( P .<_ ( P .\/ R ) /\ Q .<_ ( P .\/ R ) ) -> Q .<_ ( P .\/ R ) ) | 
						
							| 49 |  | simp23 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> P =/= Q ) | 
						
							| 50 | 49 | necomd |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> Q =/= P ) | 
						
							| 51 | 1 2 3 | hlatexchb1 |  |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ P e. A ) /\ Q =/= P ) -> ( Q .<_ ( P .\/ R ) <-> ( P .\/ Q ) = ( P .\/ R ) ) ) | 
						
							| 52 | 10 21 12 11 50 51 | syl131anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( Q .<_ ( P .\/ R ) <-> ( P .\/ Q ) = ( P .\/ R ) ) ) | 
						
							| 53 | 48 52 | imbitrid |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .<_ ( P .\/ R ) /\ Q .<_ ( P .\/ R ) ) -> ( P .\/ Q ) = ( P .\/ R ) ) ) | 
						
							| 54 | 47 53 | sylbird |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .<_ ( P .\/ R ) -> ( P .\/ Q ) = ( P .\/ R ) ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> ( ( P .\/ Q ) .<_ ( P .\/ R ) -> ( P .\/ Q ) = ( P .\/ R ) ) ) | 
						
							| 56 | 43 55 | syld |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> ( ( P .\/ Q ) .<_ ( R .\/ S ) -> ( P .\/ Q ) = ( P .\/ R ) ) ) | 
						
							| 57 | 56 | 3impia |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R /\ ( P .\/ Q ) .<_ ( R .\/ S ) ) -> ( P .\/ Q ) = ( P .\/ R ) ) | 
						
							| 58 | 57 41 | eqtrd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R /\ ( P .\/ Q ) .<_ ( R .\/ S ) ) -> ( P .\/ Q ) = ( R .\/ S ) ) | 
						
							| 59 | 58 | 3expia |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) /\ P =/= R ) -> ( ( P .\/ Q ) .<_ ( R .\/ S ) -> ( P .\/ Q ) = ( R .\/ S ) ) ) | 
						
							| 60 | 18 2 3 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) | 
						
							| 61 | 10 11 24 60 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) | 
						
							| 62 | 18 1 2 | latjle12 |  |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( P .\/ S ) /\ Q .<_ ( P .\/ S ) ) <-> ( P .\/ Q ) .<_ ( P .\/ S ) ) ) | 
						
							| 63 | 17 20 23 61 62 | syl13anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .<_ ( P .\/ S ) /\ Q .<_ ( P .\/ S ) ) <-> ( P .\/ Q ) .<_ ( P .\/ S ) ) ) | 
						
							| 64 |  | simpr |  |-  ( ( P .<_ ( P .\/ S ) /\ Q .<_ ( P .\/ S ) ) -> Q .<_ ( P .\/ S ) ) | 
						
							| 65 | 63 64 | biimtrrdi |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .<_ ( P .\/ S ) -> Q .<_ ( P .\/ S ) ) ) | 
						
							| 66 | 1 2 3 | hlatexchb1 |  |-  ( ( K e. HL /\ ( Q e. A /\ S e. A /\ P e. A ) /\ Q =/= P ) -> ( Q .<_ ( P .\/ S ) <-> ( P .\/ Q ) = ( P .\/ S ) ) ) | 
						
							| 67 | 10 21 24 11 50 66 | syl131anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( Q .<_ ( P .\/ S ) <-> ( P .\/ Q ) = ( P .\/ S ) ) ) | 
						
							| 68 | 65 67 | sylibd |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .<_ ( P .\/ S ) -> ( P .\/ Q ) = ( P .\/ S ) ) ) | 
						
							| 69 | 8 59 68 | pm2.61ne |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .<_ ( R .\/ S ) -> ( P .\/ Q ) = ( R .\/ S ) ) ) | 
						
							| 70 | 18 2 3 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 71 | 10 11 21 70 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 72 | 18 1 | latref |  |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( P .\/ Q ) ) | 
						
							| 73 | 17 71 72 | syl2anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( P .\/ Q ) .<_ ( P .\/ Q ) ) | 
						
							| 74 |  | breq2 |  |-  ( ( P .\/ Q ) = ( R .\/ S ) -> ( ( P .\/ Q ) .<_ ( P .\/ Q ) <-> ( P .\/ Q ) .<_ ( R .\/ S ) ) ) | 
						
							| 75 | 73 74 | syl5ibcom |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) = ( R .\/ S ) -> ( P .\/ Q ) .<_ ( R .\/ S ) ) ) | 
						
							| 76 | 69 75 | impbid |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .<_ ( R .\/ S ) <-> ( P .\/ Q ) = ( R .\/ S ) ) ) |