| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ps1.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | ps1.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | ps1.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | simpl21 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P e. A ) | 
						
							| 5 |  | simp1 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. HL ) | 
						
							| 6 |  | simp21 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P e. A ) | 
						
							| 7 |  | simp23 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> R e. A ) | 
						
							| 8 | 1 2 3 | hlatlej1 |  |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> P .<_ ( P .\/ R ) ) | 
						
							| 9 | 5 6 7 8 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P .<_ ( P .\/ R ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P .<_ ( P .\/ R ) ) | 
						
							| 11 |  | simp3r |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. A ) | 
						
							| 12 | 1 2 3 | hlatlej1 |  |-  ( ( K e. HL /\ P e. A /\ T e. A ) -> P .<_ ( P .\/ T ) ) | 
						
							| 13 | 5 6 11 12 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P .<_ ( P .\/ T ) ) | 
						
							| 14 |  | oveq1 |  |-  ( S = P -> ( S .\/ T ) = ( P .\/ T ) ) | 
						
							| 15 | 14 | breq2d |  |-  ( S = P -> ( P .<_ ( S .\/ T ) <-> P .<_ ( P .\/ T ) ) ) | 
						
							| 16 | 13 15 | syl5ibrcom |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S = P -> P .<_ ( S .\/ T ) ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P .<_ ( S .\/ T ) ) | 
						
							| 18 |  | breq1 |  |-  ( u = P -> ( u .<_ ( P .\/ R ) <-> P .<_ ( P .\/ R ) ) ) | 
						
							| 19 |  | breq1 |  |-  ( u = P -> ( u .<_ ( S .\/ T ) <-> P .<_ ( S .\/ T ) ) ) | 
						
							| 20 | 18 19 | anbi12d |  |-  ( u = P -> ( ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) <-> ( P .<_ ( P .\/ R ) /\ P .<_ ( S .\/ T ) ) ) ) | 
						
							| 21 | 20 | rspcev |  |-  ( ( P e. A /\ ( P .<_ ( P .\/ R ) /\ P .<_ ( S .\/ T ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) | 
						
							| 22 | 4 10 17 21 | syl12anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) | 
						
							| 23 | 22 | a1d |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) | 
						
							| 24 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 25 | 24 | 3ad2ant1 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. OP ) | 
						
							| 26 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 27 |  | eqid |  |-  ( 0. ` K ) = ( 0. ` K ) | 
						
							| 28 | 26 27 | op0cl |  |-  ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) ) | 
						
							| 29 | 25 28 | syl |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) e. ( Base ` K ) ) | 
						
							| 30 | 26 3 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 31 | 6 30 | syl |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P e. ( Base ` K ) ) | 
						
							| 32 |  | eqid |  |-  (  | 
						
							| 33 | 27 32 3 | atcvr0 |  |-  ( ( K e. HL /\ P e. A ) -> ( 0. ` K ) (  | 
						
							| 34 | 5 6 33 | syl2anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) (  | 
						
							| 35 |  | eqid |  |-  ( lt ` K ) = ( lt ` K ) | 
						
							| 36 | 26 35 32 | cvrlt |  |-  ( ( ( K e. HL /\ ( 0. ` K ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) /\ ( 0. ` K ) (  ( 0. ` K ) ( lt ` K ) P ) | 
						
							| 37 | 5 29 31 34 36 | syl31anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( lt ` K ) P ) | 
						
							| 38 |  | hlpos |  |-  ( K e. HL -> K e. Poset ) | 
						
							| 39 | 38 | 3ad2ant1 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. Poset ) | 
						
							| 40 |  | hllat |  |-  ( K e. HL -> K e. Lat ) | 
						
							| 41 | 40 | 3ad2ant1 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. Lat ) | 
						
							| 42 | 26 3 | atbase |  |-  ( R e. A -> R e. ( Base ` K ) ) | 
						
							| 43 | 7 42 | syl |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> R e. ( Base ` K ) ) | 
						
							| 44 | 26 2 | latjcl |  |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) ) | 
						
							| 45 | 41 31 43 44 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ R ) e. ( Base ` K ) ) | 
						
							| 46 | 26 1 35 | pltletr |  |-  ( ( K e. Poset /\ ( ( 0. ` K ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) ) -> ( ( ( 0. ` K ) ( lt ` K ) P /\ P .<_ ( P .\/ R ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) ) | 
						
							| 47 | 39 29 31 45 46 | syl13anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( 0. ` K ) ( lt ` K ) P /\ P .<_ ( P .\/ R ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) ) | 
						
							| 48 | 37 9 47 | mp2and |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) | 
						
							| 49 | 35 | pltne |  |-  ( ( K e. HL /\ ( 0. ` K ) e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) -> ( ( 0. ` K ) ( lt ` K ) ( P .\/ R ) -> ( 0. ` K ) =/= ( P .\/ R ) ) ) | 
						
							| 50 | 5 29 45 49 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( 0. ` K ) ( lt ` K ) ( P .\/ R ) -> ( 0. ` K ) =/= ( P .\/ R ) ) ) | 
						
							| 51 | 48 50 | mpd |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) =/= ( P .\/ R ) ) | 
						
							| 52 | 51 | necomd |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ R ) =/= ( 0. ` K ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( P .\/ R ) =/= ( 0. ` K ) ) | 
						
							| 54 |  | hlatl |  |-  ( K e. HL -> K e. AtLat ) | 
						
							| 55 | 54 | 3ad2ant1 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. AtLat ) | 
						
							| 56 |  | simp3l |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. A ) | 
						
							| 57 | 1 3 | atncmp |  |-  ( ( K e. AtLat /\ S e. A /\ P e. A ) -> ( -. S .<_ P <-> S =/= P ) ) | 
						
							| 58 | 55 56 6 57 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. S .<_ P <-> S =/= P ) ) | 
						
							| 59 |  | simp22 |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> Q e. A ) | 
						
							| 60 | 26 1 2 3 | hlexch1 |  |-  ( ( K e. HL /\ ( S e. A /\ Q e. A /\ P e. ( Base ` K ) ) /\ -. S .<_ P ) -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) | 
						
							| 61 | 60 | 3expia |  |-  ( ( K e. HL /\ ( S e. A /\ Q e. A /\ P e. ( Base ` K ) ) ) -> ( -. S .<_ P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) | 
						
							| 62 | 5 56 59 31 61 | syl13anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. S .<_ P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) | 
						
							| 63 | 58 62 | sylbird |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S =/= P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) | 
						
							| 64 | 63 | imp32 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> Q .<_ ( P .\/ S ) ) | 
						
							| 65 | 26 3 | atbase |  |-  ( Q e. A -> Q e. ( Base ` K ) ) | 
						
							| 66 | 59 65 | syl |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> Q e. ( Base ` K ) ) | 
						
							| 67 | 26 3 | atbase |  |-  ( S e. A -> S e. ( Base ` K ) ) | 
						
							| 68 | 56 67 | syl |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. ( Base ` K ) ) | 
						
							| 69 | 26 2 | latjcl |  |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ S ) e. ( Base ` K ) ) | 
						
							| 70 | 41 31 68 69 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) | 
						
							| 71 | 26 1 2 | latjlej1 |  |-  ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) | 
						
							| 72 | 41 66 70 43 71 | syl13anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) | 
						
							| 74 | 64 73 | mpd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) | 
						
							| 75 | 74 | adantrrr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) | 
						
							| 76 | 26 3 | atbase |  |-  ( T e. A -> T e. ( Base ` K ) ) | 
						
							| 77 | 11 76 | syl |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. ( Base ` K ) ) | 
						
							| 78 | 26 2 | latjcl |  |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) | 
						
							| 79 | 41 66 43 78 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) | 
						
							| 80 | 26 2 | latjcl |  |-  ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) | 
						
							| 81 | 41 70 43 80 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) | 
						
							| 82 | 26 1 | lattr |  |-  ( ( K e. Lat /\ ( T e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) ) -> ( ( T .<_ ( Q .\/ R ) /\ ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) | 
						
							| 83 | 41 77 79 81 82 | syl13anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( T .<_ ( Q .\/ R ) /\ ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) | 
						
							| 84 | 83 | expdimp |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ T .<_ ( Q .\/ R ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) | 
						
							| 85 | 84 | adantrl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) | 
						
							| 86 | 85 | adantrl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) | 
						
							| 87 | 75 86 | mpd |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) | 
						
							| 88 | 2 3 | hlatj32 |  |-  ( ( K e. HL /\ ( P e. A /\ S e. A /\ R e. A ) ) -> ( ( P .\/ S ) .\/ R ) = ( ( P .\/ R ) .\/ S ) ) | 
						
							| 89 | 5 6 56 7 88 | syl13anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ S ) .\/ R ) = ( ( P .\/ R ) .\/ S ) ) | 
						
							| 90 | 89 | breq2d |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( T .<_ ( ( P .\/ S ) .\/ R ) <-> T .<_ ( ( P .\/ R ) .\/ S ) ) ) | 
						
							| 91 | 90 | adantr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( T .<_ ( ( P .\/ S ) .\/ R ) <-> T .<_ ( ( P .\/ R ) .\/ S ) ) ) | 
						
							| 92 | 87 91 | mpbid |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> T .<_ ( ( P .\/ R ) .\/ S ) ) | 
						
							| 93 | 53 92 | jca |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) | 
						
							| 94 | 93 | adantrrl |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) | 
						
							| 95 | 94 | ex |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) ) | 
						
							| 96 | 26 1 2 27 3 | cvrat4 |  |-  ( ( K e. HL /\ ( ( P .\/ R ) e. ( Base ` K ) /\ T e. A /\ S e. A ) ) -> ( ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) | 
						
							| 97 | 5 45 11 56 96 | syl13anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) | 
						
							| 98 | 95 97 | syld |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) | 
						
							| 99 | 98 | impl |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) | 
						
							| 100 | 99 | adantrlr |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) | 
						
							| 101 | 1 3 | atncmp |  |-  ( ( K e. AtLat /\ T e. A /\ S e. A ) -> ( -. T .<_ S <-> T =/= S ) ) | 
						
							| 102 | 55 11 56 101 | syl3anc |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. T .<_ S <-> T =/= S ) ) | 
						
							| 103 |  | necom |  |-  ( T =/= S <-> S =/= T ) | 
						
							| 104 | 102 103 | bitrdi |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. T .<_ S <-> S =/= T ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( -. T .<_ S <-> S =/= T ) ) | 
						
							| 106 |  | simpl1 |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> K e. HL ) | 
						
							| 107 |  | simpl3r |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> T e. A ) | 
						
							| 108 |  | simpr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> u e. A ) | 
						
							| 109 | 68 | adantr |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> S e. ( Base ` K ) ) | 
						
							| 110 | 26 1 2 3 | hlexch1 |  |-  ( ( K e. HL /\ ( T e. A /\ u e. A /\ S e. ( Base ` K ) ) /\ -. T .<_ S ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) | 
						
							| 111 | 110 | 3expia |  |-  ( ( K e. HL /\ ( T e. A /\ u e. A /\ S e. ( Base ` K ) ) ) -> ( -. T .<_ S -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) | 
						
							| 112 | 106 107 108 109 111 | syl13anc |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( -. T .<_ S -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) | 
						
							| 113 | 105 112 | sylbird |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( S =/= T -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) | 
						
							| 114 | 113 | imp |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) /\ S =/= T ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) | 
						
							| 115 | 114 | an32s |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) /\ u e. A ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) | 
						
							| 116 | 115 | anim2d |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) /\ u e. A ) -> ( ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) | 
						
							| 117 | 116 | reximdva |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) | 
						
							| 118 | 117 | ad2ant2rl |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) | 
						
							| 119 | 118 | adantrr |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) | 
						
							| 120 | 100 119 | mpd |  |-  ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) | 
						
							| 121 | 120 | ex |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) | 
						
							| 122 | 23 121 | pm2.61dane |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) | 
						
							| 123 | 122 | imp |  |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |