| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2atm.l |
|- .<_ = ( le ` K ) |
| 2 |
|
2atm.j |
|- .\/ = ( join ` K ) |
| 3 |
|
2atm.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
2atm.a |
|- A = ( Atoms ` K ) |
| 5 |
|
simp11 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> K e. HL ) |
| 6 |
|
simp12 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> P e. A ) |
| 7 |
|
simp21 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> R e. A ) |
| 8 |
5
|
hllatd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> K e. Lat ) |
| 9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 10 |
9 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 11 |
6 10
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> P e. ( Base ` K ) ) |
| 12 |
|
simp13 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> Q e. A ) |
| 13 |
9 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 14 |
12 13
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> Q e. ( Base ` K ) ) |
| 15 |
9 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 16 |
7 15
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> R e. ( Base ` K ) ) |
| 17 |
|
simp31l |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> -. P .<_ ( Q .\/ R ) ) |
| 18 |
9 1 2
|
latnlej1r |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) /\ -. P .<_ ( Q .\/ R ) ) -> P =/= R ) |
| 19 |
8 11 14 16 17 18
|
syl131anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> P =/= R ) |
| 20 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
| 21 |
2 4 20
|
llni2 |
|- ( ( ( K e. HL /\ P e. A /\ R e. A ) /\ P =/= R ) -> ( P .\/ R ) e. ( LLines ` K ) ) |
| 22 |
5 6 7 19 21
|
syl31anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( P .\/ R ) e. ( LLines ` K ) ) |
| 23 |
|
simp22 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> S e. A ) |
| 24 |
|
simp23 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> T e. A ) |
| 25 |
|
simp31r |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> S =/= T ) |
| 26 |
2 4 20
|
llni2 |
|- ( ( ( K e. HL /\ S e. A /\ T e. A ) /\ S =/= T ) -> ( S .\/ T ) e. ( LLines ` K ) ) |
| 27 |
5 23 24 25 26
|
syl31anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( S .\/ T ) e. ( LLines ` K ) ) |
| 28 |
|
simp32 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( P .\/ R ) =/= ( S .\/ T ) ) |
| 29 |
|
simp33 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) |
| 30 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 31 |
1 2 3 30 4
|
ps-2b |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) =/= ( 0. ` K ) ) |
| 32 |
5 6 12 7 23 24 17 25 29 31
|
syl333anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) =/= ( 0. ` K ) ) |
| 33 |
3 30 4 20
|
2llnmat |
|- ( ( ( K e. HL /\ ( P .\/ R ) e. ( LLines ` K ) /\ ( S .\/ T ) e. ( LLines ` K ) ) /\ ( ( P .\/ R ) =/= ( S .\/ T ) /\ ( ( P .\/ R ) ./\ ( S .\/ T ) ) =/= ( 0. ` K ) ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) e. A ) |
| 34 |
5 22 27 28 32 33
|
syl32anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( P .\/ R ) =/= ( S .\/ T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) e. A ) |