Description: A poset is antisymmetric. (Contributed by NM, 12-May-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | psasym | |- ( ( R e. PosetRel /\ A R B /\ B R A ) -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pslem | |- ( R e. PosetRel -> ( ( ( A R B /\ B R A ) -> A R A ) /\ ( A e. U. U. R -> A R A ) /\ ( ( A R B /\ B R A ) -> A = B ) ) ) |
|
2 | 1 | simp3d | |- ( R e. PosetRel -> ( ( A R B /\ B R A ) -> A = B ) ) |
3 | 2 | 3impib | |- ( ( R e. PosetRel /\ A R B /\ B R A ) -> A = B ) |