Metamath Proof Explorer


Theorem psasym

Description: A poset is antisymmetric. (Contributed by NM, 12-May-2008)

Ref Expression
Assertion psasym
|- ( ( R e. PosetRel /\ A R B /\ B R A ) -> A = B )

Proof

Step Hyp Ref Expression
1 pslem
 |-  ( R e. PosetRel -> ( ( ( A R B /\ B R A ) -> A R A ) /\ ( A e. U. U. R -> A R A ) /\ ( ( A R B /\ B R A ) -> A = B ) ) )
2 1 simp3d
 |-  ( R e. PosetRel -> ( ( A R B /\ B R A ) -> A = B ) )
3 2 3impib
 |-  ( ( R e. PosetRel /\ A R B /\ B R A ) -> A = B )