Step |
Hyp |
Ref |
Expression |
1 |
|
psd1.s |
|- S = ( I mPwSer R ) |
2 |
|
psd1.u |
|- .1. = ( 1r ` S ) |
3 |
|
psd1.z |
|- .0. = ( 0g ` S ) |
4 |
|
psd1.i |
|- ( ph -> I e. V ) |
5 |
|
psd1.r |
|- ( ph -> R e. CRing ) |
6 |
|
psd1.x |
|- ( ph -> X e. I ) |
7 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
8 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
9 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
10 |
1 4 5
|
psrcrng |
|- ( ph -> S e. CRing ) |
11 |
10
|
crngringd |
|- ( ph -> S e. Ring ) |
12 |
7 2
|
ringidcl |
|- ( S e. Ring -> .1. e. ( Base ` S ) ) |
13 |
11 12
|
syl |
|- ( ph -> .1. e. ( Base ` S ) ) |
14 |
1 7 8 9 4 5 6 13 13
|
psdmul |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( .1. ( .r ` S ) .1. ) ) = ( ( ( ( ( I mPSDer R ) ` X ) ` .1. ) ( .r ` S ) .1. ) ( +g ` S ) ( .1. ( .r ` S ) ( ( ( I mPSDer R ) ` X ) ` .1. ) ) ) ) |
15 |
7 9 2 11 13
|
ringlidmd |
|- ( ph -> ( .1. ( .r ` S ) .1. ) = .1. ) |
16 |
15
|
fveq2d |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( .1. ( .r ` S ) .1. ) ) = ( ( ( I mPSDer R ) ` X ) ` .1. ) ) |
17 |
5
|
crnggrpd |
|- ( ph -> R e. Grp ) |
18 |
17
|
grpmgmd |
|- ( ph -> R e. Mgm ) |
19 |
1 7 4 18 6 13
|
psdcl |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` .1. ) e. ( Base ` S ) ) |
20 |
7 9 2 11 19
|
ringridmd |
|- ( ph -> ( ( ( ( I mPSDer R ) ` X ) ` .1. ) ( .r ` S ) .1. ) = ( ( ( I mPSDer R ) ` X ) ` .1. ) ) |
21 |
7 9 2 11 19
|
ringlidmd |
|- ( ph -> ( .1. ( .r ` S ) ( ( ( I mPSDer R ) ` X ) ` .1. ) ) = ( ( ( I mPSDer R ) ` X ) ` .1. ) ) |
22 |
20 21
|
oveq12d |
|- ( ph -> ( ( ( ( ( I mPSDer R ) ` X ) ` .1. ) ( .r ` S ) .1. ) ( +g ` S ) ( .1. ( .r ` S ) ( ( ( I mPSDer R ) ` X ) ` .1. ) ) ) = ( ( ( ( I mPSDer R ) ` X ) ` .1. ) ( +g ` S ) ( ( ( I mPSDer R ) ` X ) ` .1. ) ) ) |
23 |
14 16 22
|
3eqtr3rd |
|- ( ph -> ( ( ( ( I mPSDer R ) ` X ) ` .1. ) ( +g ` S ) ( ( ( I mPSDer R ) ` X ) ` .1. ) ) = ( ( ( I mPSDer R ) ` X ) ` .1. ) ) |
24 |
10
|
crnggrpd |
|- ( ph -> S e. Grp ) |
25 |
7 8 3
|
grpid |
|- ( ( S e. Grp /\ ( ( ( I mPSDer R ) ` X ) ` .1. ) e. ( Base ` S ) ) -> ( ( ( ( ( I mPSDer R ) ` X ) ` .1. ) ( +g ` S ) ( ( ( I mPSDer R ) ` X ) ` .1. ) ) = ( ( ( I mPSDer R ) ` X ) ` .1. ) <-> .0. = ( ( ( I mPSDer R ) ` X ) ` .1. ) ) ) |
26 |
24 19 25
|
syl2anc |
|- ( ph -> ( ( ( ( ( I mPSDer R ) ` X ) ` .1. ) ( +g ` S ) ( ( ( I mPSDer R ) ` X ) ` .1. ) ) = ( ( ( I mPSDer R ) ` X ) ` .1. ) <-> .0. = ( ( ( I mPSDer R ) ` X ) ` .1. ) ) ) |
27 |
23 26
|
mpbid |
|- ( ph -> .0. = ( ( ( I mPSDer R ) ` X ) ` .1. ) ) |
28 |
27
|
eqcomd |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` .1. ) = .0. ) |