| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psdadd.s |
|- S = ( I mPwSer R ) |
| 2 |
|
psdadd.b |
|- B = ( Base ` S ) |
| 3 |
|
psdadd.p |
|- .+ = ( +g ` S ) |
| 4 |
|
psdadd.r |
|- ( ph -> R e. CMnd ) |
| 5 |
|
psdadd.x |
|- ( ph -> X e. I ) |
| 6 |
|
psdadd.f |
|- ( ph -> F e. B ) |
| 7 |
|
psdadd.g |
|- ( ph -> G e. B ) |
| 8 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 9 |
1 2 8 5 6
|
psdval |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` F ) = ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
| 10 |
1 2 8 5 7
|
psdval |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` G ) = ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
| 11 |
9 10
|
oveq12d |
|- ( ph -> ( ( ( ( I mPSDer R ) ` X ) ` F ) oF ( +g ` R ) ( ( ( I mPSDer R ) ` X ) ` G ) ) = ( ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) oF ( +g ` R ) ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) ) |
| 12 |
|
ovex |
|- ( ( ( b ` X ) + 1 ) ( .g ` R ) ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) e. _V |
| 13 |
|
eqid |
|- ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) = ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 14 |
12 13
|
fnmpti |
|- ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) Fn { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 15 |
14
|
a1i |
|- ( ph -> ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) Fn { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 16 |
|
ovex |
|- ( ( ( b ` X ) + 1 ) ( .g ` R ) ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) e. _V |
| 17 |
|
eqid |
|- ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) = ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 18 |
16 17
|
fnmpti |
|- ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) Fn { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 19 |
18
|
a1i |
|- ( ph -> ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) Fn { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 20 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 21 |
20
|
rabex |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V |
| 22 |
21
|
a1i |
|- ( ph -> { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V ) |
| 23 |
|
inidm |
|- ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } i^i { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 24 |
|
fveq1 |
|- ( b = d -> ( b ` X ) = ( d ` X ) ) |
| 25 |
24
|
oveq1d |
|- ( b = d -> ( ( b ` X ) + 1 ) = ( ( d ` X ) + 1 ) ) |
| 26 |
|
fvoveq1 |
|- ( b = d -> ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
| 27 |
25 26
|
oveq12d |
|- ( b = d -> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( ( ( d ` X ) + 1 ) ( .g ` R ) ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 28 |
|
simpr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 29 |
|
ovexd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) e. _V ) |
| 30 |
13 27 28 29
|
fvmptd3 |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ` d ) = ( ( ( d ` X ) + 1 ) ( .g ` R ) ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 31 |
|
fvoveq1 |
|- ( b = d -> ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
| 32 |
25 31
|
oveq12d |
|- ( b = d -> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( ( ( d ` X ) + 1 ) ( .g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 33 |
|
ovexd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) e. _V ) |
| 34 |
17 32 28 33
|
fvmptd3 |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ` d ) = ( ( ( d ` X ) + 1 ) ( .g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 35 |
15 19 22 22 23 30 34
|
offval |
|- ( ph -> ( ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( F ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) oF ( +g ` R ) ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( b ` X ) + 1 ) ( .g ` R ) ( G ` ( b oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) = ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( ( d ` X ) + 1 ) ( .g ` R ) ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ( +g ` R ) ( ( ( d ` X ) + 1 ) ( .g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) ) |
| 36 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 37 |
1 2 36 3 6 7
|
psradd |
|- ( ph -> ( F .+ G ) = ( F oF ( +g ` R ) G ) ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( F .+ G ) = ( F oF ( +g ` R ) G ) ) |
| 39 |
38
|
fveq1d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( F .+ G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( ( F oF ( +g ` R ) G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
| 40 |
|
reldmpsr |
|- Rel dom mPwSer |
| 41 |
1 2 40
|
strov2rcl |
|- ( F e. B -> I e. _V ) |
| 42 |
6 41
|
syl |
|- ( ph -> I e. _V ) |
| 43 |
8
|
psrbagsn |
|- ( I e. _V -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 44 |
42 43
|
syl |
|- ( ph -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 46 |
8
|
psrbagaddcl |
|- ( ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 47 |
28 45 46
|
syl2anc |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 48 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 49 |
1 48 8 2 6
|
psrelbas |
|- ( ph -> F : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
| 50 |
49
|
ffnd |
|- ( ph -> F Fn { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 51 |
1 48 8 2 7
|
psrelbas |
|- ( ph -> G : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
| 52 |
51
|
ffnd |
|- ( ph -> G Fn { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 53 |
|
eqidd |
|- ( ( ph /\ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
| 54 |
|
eqidd |
|- ( ( ph /\ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
| 55 |
50 52 22 22 23 53 54
|
ofval |
|- ( ( ph /\ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( F oF ( +g ` R ) G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( +g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 56 |
47 55
|
syldan |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( F oF ( +g ` R ) G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( +g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 57 |
39 56
|
eqtrd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( F .+ G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( +g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 58 |
57
|
oveq2d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F .+ G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( +g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
| 59 |
4
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> R e. CMnd ) |
| 60 |
8
|
psrbagf |
|- ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> d : I --> NN0 ) |
| 61 |
60
|
adantl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d : I --> NN0 ) |
| 62 |
5
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> X e. I ) |
| 63 |
61 62
|
ffvelcdmd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d ` X ) e. NN0 ) |
| 64 |
|
peano2nn0 |
|- ( ( d ` X ) e. NN0 -> ( ( d ` X ) + 1 ) e. NN0 ) |
| 65 |
63 64
|
syl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( d ` X ) + 1 ) e. NN0 ) |
| 66 |
6
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> F e. B ) |
| 67 |
1 48 8 2 66
|
psrelbas |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> F : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
| 68 |
67 47
|
ffvelcdmd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) e. ( Base ` R ) ) |
| 69 |
51
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> G : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
| 70 |
69 47
|
ffvelcdmd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) e. ( Base ` R ) ) |
| 71 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 72 |
48 71 36
|
mulgnn0di |
|- ( ( R e. CMnd /\ ( ( ( d ` X ) + 1 ) e. NN0 /\ ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) e. ( Base ` R ) /\ ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) e. ( Base ` R ) ) ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( +g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) = ( ( ( ( d ` X ) + 1 ) ( .g ` R ) ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ( +g ` R ) ( ( ( d ` X ) + 1 ) ( .g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
| 73 |
59 65 68 70 72
|
syl13anc |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( +g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) = ( ( ( ( d ` X ) + 1 ) ( .g ` R ) ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ( +g ` R ) ( ( ( d ` X ) + 1 ) ( .g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
| 74 |
58 73
|
eqtr2d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( ( d ` X ) + 1 ) ( .g ` R ) ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ( +g ` R ) ( ( ( d ` X ) + 1 ) ( .g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) = ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F .+ G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
| 75 |
74
|
mpteq2dva |
|- ( ph -> ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( ( d ` X ) + 1 ) ( .g ` R ) ( F ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ( +g ` R ) ( ( ( d ` X ) + 1 ) ( .g ` R ) ( G ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) = ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F .+ G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
| 76 |
11 35 75
|
3eqtrd |
|- ( ph -> ( ( ( ( I mPSDer R ) ` X ) ` F ) oF ( +g ` R ) ( ( ( I mPSDer R ) ` X ) ` G ) ) = ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F .+ G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
| 77 |
4
|
cmnmndd |
|- ( ph -> R e. Mnd ) |
| 78 |
|
mndmgm |
|- ( R e. Mnd -> R e. Mgm ) |
| 79 |
77 78
|
syl |
|- ( ph -> R e. Mgm ) |
| 80 |
1 2 79 5 6
|
psdcl |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` F ) e. B ) |
| 81 |
1 2 79 5 7
|
psdcl |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` G ) e. B ) |
| 82 |
1 2 36 3 80 81
|
psradd |
|- ( ph -> ( ( ( ( I mPSDer R ) ` X ) ` F ) .+ ( ( ( I mPSDer R ) ` X ) ` G ) ) = ( ( ( ( I mPSDer R ) ` X ) ` F ) oF ( +g ` R ) ( ( ( I mPSDer R ) ` X ) ` G ) ) ) |
| 83 |
1 2 3 79 6 7
|
psraddcl |
|- ( ph -> ( F .+ G ) e. B ) |
| 84 |
1 2 8 5 83
|
psdval |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( F .+ G ) ) = ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F .+ G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
| 85 |
76 82 84
|
3eqtr4rd |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( F .+ G ) ) = ( ( ( ( I mPSDer R ) ` X ) ` F ) .+ ( ( ( I mPSDer R ) ` X ) ` G ) ) ) |