Step |
Hyp |
Ref |
Expression |
1 |
|
psdascl.s |
|- S = ( I mPwSer R ) |
2 |
|
psdascl.z |
|- .0. = ( 0g ` S ) |
3 |
|
psdascl.a |
|- A = ( algSc ` S ) |
4 |
|
psdascl.b |
|- B = ( Base ` R ) |
5 |
|
psdascl.i |
|- ( ph -> I e. V ) |
6 |
|
psdascl.r |
|- ( ph -> R e. CRing ) |
7 |
|
psdascl.x |
|- ( ph -> X e. I ) |
8 |
|
psdascl.c |
|- ( ph -> C e. B ) |
9 |
1 5 6
|
psrsca |
|- ( ph -> R = ( Scalar ` S ) ) |
10 |
9
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` S ) ) ) |
11 |
4 10
|
eqtrid |
|- ( ph -> B = ( Base ` ( Scalar ` S ) ) ) |
12 |
8 11
|
eleqtrd |
|- ( ph -> C e. ( Base ` ( Scalar ` S ) ) ) |
13 |
|
eqid |
|- ( Scalar ` S ) = ( Scalar ` S ) |
14 |
|
eqid |
|- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
15 |
|
eqid |
|- ( .s ` S ) = ( .s ` S ) |
16 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
17 |
3 13 14 15 16
|
asclval |
|- ( C e. ( Base ` ( Scalar ` S ) ) -> ( A ` C ) = ( C ( .s ` S ) ( 1r ` S ) ) ) |
18 |
12 17
|
syl |
|- ( ph -> ( A ` C ) = ( C ( .s ` S ) ( 1r ` S ) ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( A ` C ) ) = ( ( ( I mPSDer R ) ` X ) ` ( C ( .s ` S ) ( 1r ` S ) ) ) ) |
20 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
21 |
6
|
crngringd |
|- ( ph -> R e. Ring ) |
22 |
1 5 21
|
psrring |
|- ( ph -> S e. Ring ) |
23 |
20 16
|
ringidcl |
|- ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) |
24 |
22 23
|
syl |
|- ( ph -> ( 1r ` S ) e. ( Base ` S ) ) |
25 |
1 20 15 4 5 6 7 24 8
|
psdvsca |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( C ( .s ` S ) ( 1r ` S ) ) ) = ( C ( .s ` S ) ( ( ( I mPSDer R ) ` X ) ` ( 1r ` S ) ) ) ) |
26 |
1 16 2 5 6 7
|
psd1 |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( 1r ` S ) ) = .0. ) |
27 |
26
|
oveq2d |
|- ( ph -> ( C ( .s ` S ) ( ( ( I mPSDer R ) ` X ) ` ( 1r ` S ) ) ) = ( C ( .s ` S ) .0. ) ) |
28 |
1 5 21
|
psrlmod |
|- ( ph -> S e. LMod ) |
29 |
13 15 14 2
|
lmodvs0 |
|- ( ( S e. LMod /\ C e. ( Base ` ( Scalar ` S ) ) ) -> ( C ( .s ` S ) .0. ) = .0. ) |
30 |
28 12 29
|
syl2anc |
|- ( ph -> ( C ( .s ` S ) .0. ) = .0. ) |
31 |
27 30
|
eqtrd |
|- ( ph -> ( C ( .s ` S ) ( ( ( I mPSDer R ) ` X ) ` ( 1r ` S ) ) ) = .0. ) |
32 |
19 25 31
|
3eqtrd |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( A ` C ) ) = .0. ) |