Step |
Hyp |
Ref |
Expression |
1 |
|
psdffval.s |
|- S = ( I mPwSer R ) |
2 |
|
psdffval.b |
|- B = ( Base ` S ) |
3 |
|
psdffval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
4 |
|
psdffval.i |
|- ( ph -> I e. V ) |
5 |
|
psdffval.r |
|- ( ph -> R e. W ) |
6 |
|
psdfval.x |
|- ( ph -> X e. I ) |
7 |
|
psdval.f |
|- ( ph -> F e. B ) |
8 |
|
psdcoef.k |
|- ( ph -> K e. D ) |
9 |
1 2 3 4 5 6 7
|
psdval |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` F ) = ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( F ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
10 |
|
fveq1 |
|- ( k = K -> ( k ` X ) = ( K ` X ) ) |
11 |
10
|
oveq1d |
|- ( k = K -> ( ( k ` X ) + 1 ) = ( ( K ` X ) + 1 ) ) |
12 |
|
fvoveq1 |
|- ( k = K -> ( F ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( F ` ( K oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
13 |
11 12
|
oveq12d |
|- ( k = K -> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( F ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( ( ( K ` X ) + 1 ) ( .g ` R ) ( F ` ( K oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ k = K ) -> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( F ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( ( ( K ` X ) + 1 ) ( .g ` R ) ( F ` ( K oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
15 |
|
ovexd |
|- ( ph -> ( ( ( K ` X ) + 1 ) ( .g ` R ) ( F ` ( K oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) e. _V ) |
16 |
9 14 8 15
|
fvmptd |
|- ( ph -> ( ( ( ( I mPSDer R ) ` X ) ` F ) ` K ) = ( ( ( K ` X ) + 1 ) ( .g ` R ) ( F ` ( K oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |