| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psdffval.s |
|- S = ( I mPwSer R ) |
| 2 |
|
psdffval.b |
|- B = ( Base ` S ) |
| 3 |
|
psdffval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 4 |
|
psdffval.i |
|- ( ph -> I e. V ) |
| 5 |
|
psdffval.r |
|- ( ph -> R e. W ) |
| 6 |
|
df-psd |
|- mPSDer = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) |
| 7 |
6
|
a1i |
|- ( ph -> mPSDer = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) ) |
| 8 |
|
simpl |
|- ( ( i = I /\ r = R ) -> i = I ) |
| 9 |
|
oveq12 |
|- ( ( i = I /\ r = R ) -> ( i mPwSer r ) = ( I mPwSer R ) ) |
| 10 |
9 1
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( i mPwSer r ) = S ) |
| 11 |
10
|
fveq2d |
|- ( ( i = I /\ r = R ) -> ( Base ` ( i mPwSer r ) ) = ( Base ` S ) ) |
| 12 |
11 2
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( Base ` ( i mPwSer r ) ) = B ) |
| 13 |
8
|
oveq2d |
|- ( ( i = I /\ r = R ) -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
| 14 |
13
|
rabeqdv |
|- ( ( i = I /\ r = R ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 15 |
14 3
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = D ) |
| 16 |
|
fveq2 |
|- ( r = R -> ( .g ` r ) = ( .g ` R ) ) |
| 17 |
16
|
adantl |
|- ( ( i = I /\ r = R ) -> ( .g ` r ) = ( .g ` R ) ) |
| 18 |
|
eqidd |
|- ( ( i = I /\ r = R ) -> ( ( k ` x ) + 1 ) = ( ( k ` x ) + 1 ) ) |
| 19 |
8
|
mpteq1d |
|- ( ( i = I /\ r = R ) -> ( y e. i |-> if ( y = x , 1 , 0 ) ) = ( y e. I |-> if ( y = x , 1 , 0 ) ) ) |
| 20 |
19
|
oveq2d |
|- ( ( i = I /\ r = R ) -> ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) = ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) |
| 21 |
20
|
fveq2d |
|- ( ( i = I /\ r = R ) -> ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) = ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) |
| 22 |
17 18 21
|
oveq123d |
|- ( ( i = I /\ r = R ) -> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) = ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) |
| 23 |
15 22
|
mpteq12dv |
|- ( ( i = I /\ r = R ) -> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) = ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) |
| 24 |
12 23
|
mpteq12dv |
|- ( ( i = I /\ r = R ) -> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) = ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) |
| 25 |
8 24
|
mpteq12dv |
|- ( ( i = I /\ r = R ) -> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) = ( x e. I |-> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) = ( x e. I |-> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) |
| 27 |
4
|
elexd |
|- ( ph -> I e. _V ) |
| 28 |
5
|
elexd |
|- ( ph -> R e. _V ) |
| 29 |
4
|
mptexd |
|- ( ph -> ( x e. I |-> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) e. _V ) |
| 30 |
7 26 27 28 29
|
ovmpod |
|- ( ph -> ( I mPSDer R ) = ( x e. I |-> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) |