Step |
Hyp |
Ref |
Expression |
1 |
|
psdffval.s |
|- S = ( I mPwSer R ) |
2 |
|
psdffval.b |
|- B = ( Base ` S ) |
3 |
|
psdffval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
4 |
|
psdffval.i |
|- ( ph -> I e. V ) |
5 |
|
psdffval.r |
|- ( ph -> R e. W ) |
6 |
|
psdfval.x |
|- ( ph -> X e. I ) |
7 |
1 2 3 4 5
|
psdffval |
|- ( ph -> ( I mPSDer R ) = ( x e. I |-> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) |
8 |
|
fveq2 |
|- ( x = X -> ( k ` x ) = ( k ` X ) ) |
9 |
8
|
oveq1d |
|- ( x = X -> ( ( k ` x ) + 1 ) = ( ( k ` X ) + 1 ) ) |
10 |
|
eqeq2 |
|- ( x = X -> ( y = x <-> y = X ) ) |
11 |
10
|
ifbid |
|- ( x = X -> if ( y = x , 1 , 0 ) = if ( y = X , 1 , 0 ) ) |
12 |
11
|
mpteq2dv |
|- ( x = X -> ( y e. I |-> if ( y = x , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) |
13 |
12
|
oveq2d |
|- ( x = X -> ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) = ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
14 |
13
|
fveq2d |
|- ( x = X -> ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) = ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
15 |
9 14
|
oveq12d |
|- ( x = X -> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) = ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
16 |
15
|
mpteq2dv |
|- ( x = X -> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) = ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
17 |
16
|
mpteq2dv |
|- ( x = X -> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) = ( f e. B |-> ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) ) |
18 |
17
|
adantl |
|- ( ( ph /\ x = X ) -> ( f e. B |-> ( k e. D |-> ( ( ( k ` x ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) = ( f e. B |-> ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) ) |
19 |
2
|
fvexi |
|- B e. _V |
20 |
19
|
a1i |
|- ( ph -> B e. _V ) |
21 |
20
|
mptexd |
|- ( ph -> ( f e. B |-> ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) e. _V ) |
22 |
7 18 6 21
|
fvmptd |
|- ( ph -> ( ( I mPSDer R ) ` X ) = ( f e. B |-> ( k e. D |-> ( ( ( k ` X ) + 1 ) ( .g ` R ) ( f ` ( k oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) ) |