| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssun1 | 
							 |-  dom R C_ ( dom R u. ran R )  | 
						
						
							| 2 | 
							
								
							 | 
							dmrnssfld | 
							 |-  ( dom R u. ran R ) C_ U. U. R  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sstri | 
							 |-  dom R C_ U. U. R  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							 |-  ( R e. PosetRel -> dom R C_ U. U. R )  | 
						
						
							| 5 | 
							
								
							 | 
							pslem | 
							 |-  ( R e. PosetRel -> ( ( ( x R x /\ x R x ) -> x R x ) /\ ( x e. U. U. R -> x R x ) /\ ( ( x R x /\ x R x ) -> x = x ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							simp2d | 
							 |-  ( R e. PosetRel -> ( x e. U. U. R -> x R x ) )  | 
						
						
							| 7 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 8 | 
							
								7 7
							 | 
							breldm | 
							 |-  ( x R x -> x e. dom R )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							syl6 | 
							 |-  ( R e. PosetRel -> ( x e. U. U. R -> x e. dom R ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ssrdv | 
							 |-  ( R e. PosetRel -> U. U. R C_ dom R )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							eqssd | 
							 |-  ( R e. PosetRel -> dom R = U. U. R )  | 
						
						
							| 12 | 
							
								
							 | 
							ssun2 | 
							 |-  ran R C_ ( dom R u. ran R )  | 
						
						
							| 13 | 
							
								12 2
							 | 
							sstri | 
							 |-  ran R C_ U. U. R  | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							 |-  ( R e. PosetRel -> ran R C_ U. U. R )  | 
						
						
							| 15 | 
							
								7 7
							 | 
							brelrn | 
							 |-  ( x R x -> x e. ran R )  | 
						
						
							| 16 | 
							
								6 15
							 | 
							syl6 | 
							 |-  ( R e. PosetRel -> ( x e. U. U. R -> x e. ran R ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							ssrdv | 
							 |-  ( R e. PosetRel -> U. U. R C_ ran R )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							eqssd | 
							 |-  ( R e. PosetRel -> ran R = U. U. R )  | 
						
						
							| 19 | 
							
								11 18
							 | 
							jca | 
							 |-  ( R e. PosetRel -> ( dom R = U. U. R /\ ran R = U. U. R ) )  |