Step |
Hyp |
Ref |
Expression |
1 |
|
psdmul.s |
|- S = ( I mPwSer R ) |
2 |
|
psdmul.b |
|- B = ( Base ` S ) |
3 |
|
psdmul.p |
|- .+ = ( +g ` S ) |
4 |
|
psdmul.m |
|- .x. = ( .r ` S ) |
5 |
|
psdmul.i |
|- ( ph -> I e. V ) |
6 |
|
psdmul.r |
|- ( ph -> R e. CRing ) |
7 |
|
psdmul.x |
|- ( ph -> X e. I ) |
8 |
|
psdmul.f |
|- ( ph -> F e. B ) |
9 |
|
psdmul.g |
|- ( ph -> G e. B ) |
10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
11 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
12 |
6
|
crngringd |
|- ( ph -> R e. Ring ) |
13 |
12
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
14 |
13
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> R e. CMnd ) |
15 |
|
simpr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
16 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
17 |
16
|
psrbagsn |
|- ( I e. V -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
18 |
5 17
|
syl |
|- ( ph -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
19 |
18
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
20 |
16
|
psrbagaddcl |
|- ( ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
21 |
15 19 20
|
syl2anc |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
22 |
16
|
psrbaglefi |
|- ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } e. Fin ) |
23 |
21 22
|
syl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } e. Fin ) |
24 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
25 |
6
|
crnggrpd |
|- ( ph -> R e. Grp ) |
26 |
25
|
grpmndd |
|- ( ph -> R e. Mnd ) |
27 |
26
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> R e. Mnd ) |
28 |
16
|
psrbagf |
|- ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> d : I --> NN0 ) |
29 |
28
|
adantl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d : I --> NN0 ) |
30 |
7
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> X e. I ) |
31 |
29 30
|
ffvelcdmd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d ` X ) e. NN0 ) |
32 |
|
peano2nn0 |
|- ( ( d ` X ) e. NN0 -> ( ( d ` X ) + 1 ) e. NN0 ) |
33 |
31 32
|
syl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( d ` X ) + 1 ) e. NN0 ) |
34 |
33
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( ( d ` X ) + 1 ) e. NN0 ) |
35 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
36 |
12
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> R e. Ring ) |
37 |
1 10 16 2 8
|
psrelbas |
|- ( ph -> F : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
38 |
37
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> F : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
39 |
|
elrabi |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } -> u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
40 |
39
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
41 |
38 40
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( F ` u ) e. ( Base ` R ) ) |
42 |
1 10 16 2 9
|
psrelbas |
|- ( ph -> G : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
43 |
42
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> G : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
44 |
|
eqid |
|- { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } = { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |
45 |
16 44
|
psrbagconcl |
|- ( ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
46 |
21 45
|
sylan |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
47 |
|
elrabi |
|- ( ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
48 |
46 47
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
49 |
43 48
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) e. ( Base ` R ) ) |
50 |
10 35 36 41 49
|
ringcld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) e. ( Base ` R ) ) |
51 |
10 24 27 34 50
|
mulgnn0cld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. ( Base ` R ) ) |
52 |
|
disjdifr |
|- ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) i^i { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) = (/) |
53 |
52
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) i^i { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) = (/) ) |
54 |
|
1nn0 |
|- 1 e. NN0 |
55 |
|
0nn0 |
|- 0 e. NN0 |
56 |
54 55
|
ifcli |
|- if ( i = X , 1 , 0 ) e. NN0 |
57 |
56
|
nn0ge0i |
|- 0 <_ if ( i = X , 1 , 0 ) |
58 |
29
|
ffvelcdmda |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( d ` i ) e. NN0 ) |
59 |
58
|
nn0red |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( d ` i ) e. RR ) |
60 |
56
|
nn0rei |
|- if ( i = X , 1 , 0 ) e. RR |
61 |
60
|
a1i |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> if ( i = X , 1 , 0 ) e. RR ) |
62 |
59 61
|
addge01d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( 0 <_ if ( i = X , 1 , 0 ) <-> ( d ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) ) |
63 |
57 62
|
mpbii |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( d ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
64 |
63
|
ralrimiva |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> A. i e. I ( d ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
65 |
29
|
ffnd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d Fn I ) |
66 |
54 55
|
ifcli |
|- if ( y = X , 1 , 0 ) e. NN0 |
67 |
66
|
elexi |
|- if ( y = X , 1 , 0 ) e. _V |
68 |
|
eqid |
|- ( y e. I |-> if ( y = X , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) |
69 |
67 68
|
fnmpti |
|- ( y e. I |-> if ( y = X , 1 , 0 ) ) Fn I |
70 |
69
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) Fn I ) |
71 |
5
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> I e. V ) |
72 |
|
inidm |
|- ( I i^i I ) = I |
73 |
65 70 71 71 72
|
offn |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) Fn I ) |
74 |
|
eqidd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( d ` i ) = ( d ` i ) ) |
75 |
|
eqeq1 |
|- ( y = i -> ( y = X <-> i = X ) ) |
76 |
75
|
ifbid |
|- ( y = i -> if ( y = X , 1 , 0 ) = if ( i = X , 1 , 0 ) ) |
77 |
56
|
elexi |
|- if ( i = X , 1 , 0 ) e. _V |
78 |
76 68 77
|
fvmpt |
|- ( i e. I -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` i ) = if ( i = X , 1 , 0 ) ) |
79 |
78
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` i ) = if ( i = X , 1 , 0 ) ) |
80 |
65 70 71 71 72 74 79
|
ofval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
81 |
65 73 71 71 72 74 80
|
ofrfval |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> A. i e. I ( d ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) ) |
82 |
64 81
|
mpbird |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
83 |
82
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
84 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> I e. V ) |
85 |
16
|
psrbagf |
|- ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> k : I --> NN0 ) |
86 |
85
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> k : I --> NN0 ) |
87 |
29
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d : I --> NN0 ) |
88 |
16
|
psrbagf |
|- ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) : I --> NN0 ) |
89 |
21 88
|
syl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) : I --> NN0 ) |
90 |
89
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) : I --> NN0 ) |
91 |
|
nn0re |
|- ( q e. NN0 -> q e. RR ) |
92 |
|
nn0re |
|- ( r e. NN0 -> r e. RR ) |
93 |
|
nn0re |
|- ( s e. NN0 -> s e. RR ) |
94 |
|
letr |
|- ( ( q e. RR /\ r e. RR /\ s e. RR ) -> ( ( q <_ r /\ r <_ s ) -> q <_ s ) ) |
95 |
91 92 93 94
|
syl3an |
|- ( ( q e. NN0 /\ r e. NN0 /\ s e. NN0 ) -> ( ( q <_ r /\ r <_ s ) -> q <_ s ) ) |
96 |
95
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( q e. NN0 /\ r e. NN0 /\ s e. NN0 ) ) -> ( ( q <_ r /\ r <_ s ) -> q <_ s ) ) |
97 |
84 86 87 90 96
|
caoftrn |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( k oR <_ d /\ d oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) -> k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
98 |
83 97
|
mpan2d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( k oR <_ d -> k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
99 |
98
|
ss2rabdv |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
100 |
|
undifr |
|- ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } <-> ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) u. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) = { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
101 |
99 100
|
sylib |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) u. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) = { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
102 |
101
|
eqcomd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } = ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) u. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
103 |
10 11 14 23 51 53 102
|
gsummptfidmsplit |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
104 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
105 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
106 |
105
|
rabex |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V |
107 |
106
|
rabex |
|- { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } e. _V |
108 |
107
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } e. _V ) |
109 |
|
ovex |
|- ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) e. _V |
110 |
|
eqid |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) = ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) |
111 |
109 110
|
fnmpti |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) Fn { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |
112 |
111
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) Fn { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
113 |
|
fvexd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( 0g ` R ) e. _V ) |
114 |
112 23 113
|
fndmfifsupp |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) finSupp ( 0g ` R ) ) |
115 |
10 104 24 108 50 114 14 33
|
gsummulg |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( ( ( d ` X ) + 1 ) ( .g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) |
116 |
|
difrab |
|- ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) = { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. k oR <_ d ) } |
117 |
116
|
eleq2i |
|- ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) <-> u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. k oR <_ d ) } ) |
118 |
|
breq1 |
|- ( k = u -> ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
119 |
|
breq1 |
|- ( k = u -> ( k oR <_ d <-> u oR <_ d ) ) |
120 |
119
|
notbid |
|- ( k = u -> ( -. k oR <_ d <-> -. u oR <_ d ) ) |
121 |
118 120
|
anbi12d |
|- ( k = u -> ( ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. k oR <_ d ) <-> ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. u oR <_ d ) ) ) |
122 |
121
|
elrab |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. k oR <_ d ) } <-> ( u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. u oR <_ d ) ) ) |
123 |
16
|
psrbagf |
|- ( u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> u : I --> NN0 ) |
124 |
123
|
ffnd |
|- ( u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> u Fn I ) |
125 |
124
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> u Fn I ) |
126 |
73
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) Fn I ) |
127 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> I e. V ) |
128 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( u ` i ) = ( u ` i ) ) |
129 |
65
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d Fn I ) |
130 |
66
|
a1i |
|- ( y e. I -> if ( y = X , 1 , 0 ) e. NN0 ) |
131 |
68 130
|
fmpti |
|- ( y e. I |-> if ( y = X , 1 , 0 ) ) : I --> NN0 |
132 |
131
|
a1i |
|- ( ph -> ( y e. I |-> if ( y = X , 1 , 0 ) ) : I --> NN0 ) |
133 |
132
|
ffnd |
|- ( ph -> ( y e. I |-> if ( y = X , 1 , 0 ) ) Fn I ) |
134 |
133
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) Fn I ) |
135 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( d ` i ) = ( d ` i ) ) |
136 |
78
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` i ) = if ( i = X , 1 , 0 ) ) |
137 |
129 134 127 127 72 135 136
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
138 |
125 126 127 127 72 128 137
|
ofrfval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) ) |
139 |
125 129 127 127 72 128 135
|
ofrfval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u oR <_ d <-> A. i e. I ( u ` i ) <_ ( d ` i ) ) ) |
140 |
139
|
notbid |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( -. u oR <_ d <-> -. A. i e. I ( u ` i ) <_ ( d ` i ) ) ) |
141 |
|
rexnal |
|- ( E. i e. I -. ( u ` i ) <_ ( d ` i ) <-> -. A. i e. I ( u ` i ) <_ ( d ` i ) ) |
142 |
140 141
|
bitr4di |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( -. u oR <_ d <-> E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) |
143 |
138 142
|
anbi12d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. u oR <_ d ) <-> ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) ) |
144 |
31
|
ad2antrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( d ` X ) e. NN0 ) |
145 |
123
|
adantl |
|- ( ( ph /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> u : I --> NN0 ) |
146 |
7
|
adantr |
|- ( ( ph /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> X e. I ) |
147 |
145 146
|
ffvelcdmd |
|- ( ( ph /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u ` X ) e. NN0 ) |
148 |
147
|
adantlr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u ` X ) e. NN0 ) |
149 |
148
|
adantr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( u ` X ) e. NN0 ) |
150 |
|
nn0nlt0 |
|- ( ( d ` X ) e. NN0 -> -. ( d ` X ) < 0 ) |
151 |
144 150
|
syl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> -. ( d ` X ) < 0 ) |
152 |
29
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> d : I --> NN0 ) |
153 |
152
|
ffvelcdmda |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( d ` i ) e. NN0 ) |
154 |
153
|
nn0cnd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( d ` i ) e. CC ) |
155 |
154
|
addridd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( ( d ` i ) + 0 ) = ( d ` i ) ) |
156 |
155
|
breq2d |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( ( u ` i ) <_ ( ( d ` i ) + 0 ) <-> ( u ` i ) <_ ( d ` i ) ) ) |
157 |
156
|
biimpd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( ( u ` i ) <_ ( ( d ` i ) + 0 ) -> ( u ` i ) <_ ( d ` i ) ) ) |
158 |
|
ifnefalse |
|- ( i =/= X -> if ( i = X , 1 , 0 ) = 0 ) |
159 |
158
|
oveq2d |
|- ( i =/= X -> ( ( d ` i ) + if ( i = X , 1 , 0 ) ) = ( ( d ` i ) + 0 ) ) |
160 |
159
|
breq2d |
|- ( i =/= X -> ( ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) <-> ( u ` i ) <_ ( ( d ` i ) + 0 ) ) ) |
161 |
160
|
imbi1d |
|- ( i =/= X -> ( ( ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) -> ( u ` i ) <_ ( d ` i ) ) <-> ( ( u ` i ) <_ ( ( d ` i ) + 0 ) -> ( u ` i ) <_ ( d ` i ) ) ) ) |
162 |
157 161
|
syl5ibrcom |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( i =/= X -> ( ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) -> ( u ` i ) <_ ( d ` i ) ) ) ) |
163 |
162
|
imp |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) /\ i =/= X ) -> ( ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) -> ( u ` i ) <_ ( d ` i ) ) ) |
164 |
163
|
impancom |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) /\ ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) -> ( i =/= X -> ( u ` i ) <_ ( d ` i ) ) ) |
165 |
164
|
necon1bd |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) /\ ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) -> ( -. ( u ` i ) <_ ( d ` i ) -> i = X ) ) |
166 |
165
|
ancrd |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) /\ ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) -> ( -. ( u ` i ) <_ ( d ` i ) -> ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) ) |
167 |
166
|
ex |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ i e. I ) -> ( ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) -> ( -. ( u ` i ) <_ ( d ` i ) -> ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) ) ) |
168 |
167
|
ralimdva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) -> A. i e. I ( -. ( u ` i ) <_ ( d ` i ) -> ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) ) ) |
169 |
168
|
anim1d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) -> ( A. i e. I ( -. ( u ` i ) <_ ( d ` i ) -> ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) ) |
170 |
169
|
imp |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( A. i e. I ( -. ( u ` i ) <_ ( d ` i ) -> ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) |
171 |
|
rexim |
|- ( A. i e. I ( -. ( u ` i ) <_ ( d ` i ) -> ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) -> ( E. i e. I -. ( u ` i ) <_ ( d ` i ) -> E. i e. I ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) ) |
172 |
171
|
imp |
|- ( ( A. i e. I ( -. ( u ` i ) <_ ( d ` i ) -> ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) -> E. i e. I ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) |
173 |
|
fveq2 |
|- ( i = X -> ( u ` i ) = ( u ` X ) ) |
174 |
|
fveq2 |
|- ( i = X -> ( d ` i ) = ( d ` X ) ) |
175 |
173 174
|
breq12d |
|- ( i = X -> ( ( u ` i ) <_ ( d ` i ) <-> ( u ` X ) <_ ( d ` X ) ) ) |
176 |
175
|
notbid |
|- ( i = X -> ( -. ( u ` i ) <_ ( d ` i ) <-> -. ( u ` X ) <_ ( d ` X ) ) ) |
177 |
176
|
ceqsrexbv |
|- ( E. i e. I ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) <-> ( X e. I /\ -. ( u ` X ) <_ ( d ` X ) ) ) |
178 |
177
|
simprbi |
|- ( E. i e. I ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) -> -. ( u ` X ) <_ ( d ` X ) ) |
179 |
172 178
|
syl |
|- ( ( A. i e. I ( -. ( u ` i ) <_ ( d ` i ) -> ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) -> -. ( u ` X ) <_ ( d ` X ) ) |
180 |
31
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d ` X ) e. NN0 ) |
181 |
180
|
nn0red |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d ` X ) e. RR ) |
182 |
148
|
nn0red |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u ` X ) e. RR ) |
183 |
181 182
|
ltnled |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( d ` X ) < ( u ` X ) <-> -. ( u ` X ) <_ ( d ` X ) ) ) |
184 |
183
|
biimpar |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ -. ( u ` X ) <_ ( d ` X ) ) -> ( d ` X ) < ( u ` X ) ) |
185 |
179 184
|
sylan2 |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( -. ( u ` i ) <_ ( d ` i ) -> ( i = X /\ -. ( u ` i ) <_ ( d ` i ) ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( d ` X ) < ( u ` X ) ) |
186 |
170 185
|
syldan |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( d ` X ) < ( u ` X ) ) |
187 |
|
breq2 |
|- ( ( u ` X ) = 0 -> ( ( d ` X ) < ( u ` X ) <-> ( d ` X ) < 0 ) ) |
188 |
186 187
|
syl5ibcom |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( ( u ` X ) = 0 -> ( d ` X ) < 0 ) ) |
189 |
151 188
|
mtod |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> -. ( u ` X ) = 0 ) |
190 |
189
|
neqned |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( u ` X ) =/= 0 ) |
191 |
|
elnnne0 |
|- ( ( u ` X ) e. NN <-> ( ( u ` X ) e. NN0 /\ ( u ` X ) =/= 0 ) ) |
192 |
149 190 191
|
sylanbrc |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( u ` X ) e. NN ) |
193 |
|
elfzo0 |
|- ( ( d ` X ) e. ( 0 ..^ ( u ` X ) ) <-> ( ( d ` X ) e. NN0 /\ ( u ` X ) e. NN /\ ( d ` X ) < ( u ` X ) ) ) |
194 |
144 192 186 193
|
syl3anbrc |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( d ` X ) e. ( 0 ..^ ( u ` X ) ) ) |
195 |
|
fzostep1 |
|- ( ( d ` X ) e. ( 0 ..^ ( u ` X ) ) -> ( ( ( d ` X ) + 1 ) e. ( 0 ..^ ( u ` X ) ) \/ ( ( d ` X ) + 1 ) = ( u ` X ) ) ) |
196 |
194 195
|
syl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( ( ( d ` X ) + 1 ) e. ( 0 ..^ ( u ` X ) ) \/ ( ( d ` X ) + 1 ) = ( u ` X ) ) ) |
197 |
149
|
nn0red |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( u ` X ) e. RR ) |
198 |
33
|
ad2antrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( ( d ` X ) + 1 ) e. NN0 ) |
199 |
198
|
nn0red |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( ( d ` X ) + 1 ) e. RR ) |
200 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> X e. I ) |
201 |
|
iftrue |
|- ( i = X -> if ( i = X , 1 , 0 ) = 1 ) |
202 |
174 201
|
oveq12d |
|- ( i = X -> ( ( d ` i ) + if ( i = X , 1 , 0 ) ) = ( ( d ` X ) + 1 ) ) |
203 |
173 202
|
breq12d |
|- ( i = X -> ( ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) <-> ( u ` X ) <_ ( ( d ` X ) + 1 ) ) ) |
204 |
203
|
rspcv |
|- ( X e. I -> ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) -> ( u ` X ) <_ ( ( d ` X ) + 1 ) ) ) |
205 |
200 204
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) -> ( u ` X ) <_ ( ( d ` X ) + 1 ) ) ) |
206 |
205
|
imp |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) -> ( u ` X ) <_ ( ( d ` X ) + 1 ) ) |
207 |
206
|
adantrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( u ` X ) <_ ( ( d ` X ) + 1 ) ) |
208 |
197 199 207
|
lensymd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> -. ( ( d ` X ) + 1 ) < ( u ` X ) ) |
209 |
208
|
intn3an3d |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> -. ( ( ( d ` X ) + 1 ) e. NN0 /\ ( u ` X ) e. NN /\ ( ( d ` X ) + 1 ) < ( u ` X ) ) ) |
210 |
|
elfzo0 |
|- ( ( ( d ` X ) + 1 ) e. ( 0 ..^ ( u ` X ) ) <-> ( ( ( d ` X ) + 1 ) e. NN0 /\ ( u ` X ) e. NN /\ ( ( d ` X ) + 1 ) < ( u ` X ) ) ) |
211 |
209 210
|
sylnibr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> -. ( ( d ` X ) + 1 ) e. ( 0 ..^ ( u ` X ) ) ) |
212 |
196 211
|
orcnd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) /\ E. i e. I -. ( u ` i ) <_ ( d ` i ) ) ) -> ( ( d ` X ) + 1 ) = ( u ` X ) ) |
213 |
143 212
|
sylbida |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. u oR <_ d ) ) -> ( ( d ` X ) + 1 ) = ( u ` X ) ) |
214 |
213
|
anasss |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. u oR <_ d ) ) ) -> ( ( d ` X ) + 1 ) = ( u ` X ) ) |
215 |
122 214
|
sylan2b |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. k oR <_ d ) } ) -> ( ( d ` X ) + 1 ) = ( u ` X ) ) |
216 |
117 215
|
sylan2b |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( ( d ` X ) + 1 ) = ( u ` X ) ) |
217 |
216
|
oveq1d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) = ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
218 |
217
|
mpteq2dva |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) = ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) |
219 |
218
|
oveq2d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) |
220 |
16
|
psrbaglefi |
|- ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } e. Fin ) |
221 |
220
|
adantl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } e. Fin ) |
222 |
26
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> R e. Mnd ) |
223 |
33
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( d ` X ) + 1 ) e. NN0 ) |
224 |
12
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> R e. Ring ) |
225 |
|
elrabi |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
226 |
37
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> F : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
227 |
226
|
ffvelcdmda |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( F ` u ) e. ( Base ` R ) ) |
228 |
225 227
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( F ` u ) e. ( Base ` R ) ) |
229 |
42
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> G : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
230 |
29
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> d : I --> NN0 ) |
231 |
230
|
ffvelcdmda |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( d ` i ) e. NN0 ) |
232 |
231
|
nn0cnd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( d ` i ) e. CC ) |
233 |
225 123
|
syl |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> u : I --> NN0 ) |
234 |
233
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> u : I --> NN0 ) |
235 |
234
|
ffvelcdmda |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( u ` i ) e. NN0 ) |
236 |
235
|
nn0cnd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( u ` i ) e. CC ) |
237 |
56
|
nn0cni |
|- if ( i = X , 1 , 0 ) e. CC |
238 |
237
|
a1i |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> if ( i = X , 1 , 0 ) e. CC ) |
239 |
232 236 238
|
subadd23d |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( ( ( d ` i ) - ( u ` i ) ) + if ( i = X , 1 , 0 ) ) = ( ( d ` i ) + ( if ( i = X , 1 , 0 ) - ( u ` i ) ) ) ) |
240 |
232 238 236
|
addsubassd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( ( ( d ` i ) + if ( i = X , 1 , 0 ) ) - ( u ` i ) ) = ( ( d ` i ) + ( if ( i = X , 1 , 0 ) - ( u ` i ) ) ) ) |
241 |
239 240
|
eqtr4d |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( ( ( d ` i ) - ( u ` i ) ) + if ( i = X , 1 , 0 ) ) = ( ( ( d ` i ) + if ( i = X , 1 , 0 ) ) - ( u ` i ) ) ) |
242 |
241
|
mpteq2dva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( i e. I |-> ( ( ( d ` i ) - ( u ` i ) ) + if ( i = X , 1 , 0 ) ) ) = ( i e. I |-> ( ( ( d ` i ) + if ( i = X , 1 , 0 ) ) - ( u ` i ) ) ) ) |
243 |
|
eqid |
|- { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } = { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |
244 |
16 243
|
psrbagconcl |
|- ( ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF - u ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
245 |
|
elrabi |
|- ( ( d oF - u ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> ( d oF - u ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
246 |
244 245
|
syl |
|- ( ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF - u ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
247 |
246
|
adantll |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF - u ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
248 |
16
|
psrbagf |
|- ( ( d oF - u ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> ( d oF - u ) : I --> NN0 ) |
249 |
247 248
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF - u ) : I --> NN0 ) |
250 |
249
|
ffnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF - u ) Fn I ) |
251 |
69
|
a1i |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) Fn I ) |
252 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> I e. V ) |
253 |
230
|
ffnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> d Fn I ) |
254 |
234
|
ffnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> u Fn I ) |
255 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( d ` i ) = ( d ` i ) ) |
256 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( u ` i ) = ( u ` i ) ) |
257 |
253 254 252 252 72 255 256
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( ( d oF - u ) ` i ) = ( ( d ` i ) - ( u ` i ) ) ) |
258 |
78
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` i ) = if ( i = X , 1 , 0 ) ) |
259 |
250 251 252 252 72 257 258
|
offval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( d oF - u ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( i e. I |-> ( ( ( d ` i ) - ( u ` i ) ) + if ( i = X , 1 , 0 ) ) ) ) |
260 |
|
simplr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
261 |
18
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
262 |
260 261 20
|
syl2anc |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
263 |
262 88
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) : I --> NN0 ) |
264 |
263
|
ffnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) Fn I ) |
265 |
253 251 252 252 72 255 258
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ i e. I ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
266 |
264 254 252 252 72 265 256
|
offval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) = ( i e. I |-> ( ( ( d ` i ) + if ( i = X , 1 , 0 ) ) - ( u ` i ) ) ) ) |
267 |
242 259 266
|
3eqtr4d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( d oF - u ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) |
268 |
16
|
psrbagaddcl |
|- ( ( ( d oF - u ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( d oF - u ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
269 |
247 261 268
|
syl2anc |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( d oF - u ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
270 |
267 269
|
eqeltrrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
271 |
229 270
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) e. ( Base ` R ) ) |
272 |
10 35 224 228 271
|
ringcld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) e. ( Base ` R ) ) |
273 |
10 24 222 223 272
|
mulgnn0cld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. ( Base ` R ) ) |
274 |
|
disjdifr |
|- ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) i^i { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) = (/) |
275 |
274
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) i^i { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) = (/) ) |
276 |
|
simpl |
|- ( ( k oR <_ d /\ ( k ` X ) = 0 ) -> k oR <_ d ) |
277 |
276
|
a1i |
|- ( k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> ( ( k oR <_ d /\ ( k ` X ) = 0 ) -> k oR <_ d ) ) |
278 |
277
|
ss2rabi |
|- { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |
279 |
278
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
280 |
|
undifr |
|- ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } <-> ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) u. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) = { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
281 |
279 280
|
sylib |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) u. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) = { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
282 |
281
|
eqcomd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } = ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) u. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) |
283 |
10 11 14 221 273 275 282
|
gsummptfidmsplit |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
284 |
|
eldifi |
|- ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
285 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> X e. I ) |
286 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ X e. I ) -> ( d ` X ) = ( d ` X ) ) |
287 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ X e. I ) -> ( u ` X ) = ( u ` X ) ) |
288 |
253 254 252 252 72 286 287
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ X e. I ) -> ( ( d oF - u ) ` X ) = ( ( d ` X ) - ( u ` X ) ) ) |
289 |
285 288
|
mpdan |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( d oF - u ) ` X ) = ( ( d ` X ) - ( u ` X ) ) ) |
290 |
284 289
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( d oF - u ) ` X ) = ( ( d ` X ) - ( u ` X ) ) ) |
291 |
290
|
oveq2d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( u ` X ) + ( ( d oF - u ) ` X ) ) = ( ( u ` X ) + ( ( d ` X ) - ( u ` X ) ) ) ) |
292 |
234 285
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( u ` X ) e. NN0 ) |
293 |
284 292
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( u ` X ) e. NN0 ) |
294 |
293
|
nn0cnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( u ` X ) e. CC ) |
295 |
31
|
nn0cnd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( d ` X ) e. CC ) |
296 |
295
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( d ` X ) e. CC ) |
297 |
294 296
|
pncan3d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( u ` X ) + ( ( d ` X ) - ( u ` X ) ) ) = ( d ` X ) ) |
298 |
291 297
|
eqtrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( u ` X ) + ( ( d oF - u ) ` X ) ) = ( d ` X ) ) |
299 |
298
|
oveq1d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( ( u ` X ) + ( ( d oF - u ) ` X ) ) + 1 ) = ( ( d ` X ) + 1 ) ) |
300 |
249 285
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( d oF - u ) ` X ) e. NN0 ) |
301 |
284 300
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( d oF - u ) ` X ) e. NN0 ) |
302 |
301
|
nn0cnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( d oF - u ) ` X ) e. CC ) |
303 |
|
1cnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> 1 e. CC ) |
304 |
294 302 303
|
addassd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( ( u ` X ) + ( ( d oF - u ) ` X ) ) + 1 ) = ( ( u ` X ) + ( ( ( d oF - u ) ` X ) + 1 ) ) ) |
305 |
299 304
|
eqtr3d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( d ` X ) + 1 ) = ( ( u ` X ) + ( ( ( d oF - u ) ` X ) + 1 ) ) ) |
306 |
305
|
oveq1d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) = ( ( ( u ` X ) + ( ( ( d oF - u ) ` X ) + 1 ) ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
307 |
26
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> R e. Mnd ) |
308 |
|
peano2nn0 |
|- ( ( ( d oF - u ) ` X ) e. NN0 -> ( ( ( d oF - u ) ` X ) + 1 ) e. NN0 ) |
309 |
300 308
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( ( d oF - u ) ` X ) + 1 ) e. NN0 ) |
310 |
284 309
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( ( d oF - u ) ` X ) + 1 ) e. NN0 ) |
311 |
284 272
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) e. ( Base ` R ) ) |
312 |
10 24 11
|
mulgnn0dir |
|- ( ( R e. Mnd /\ ( ( u ` X ) e. NN0 /\ ( ( ( d oF - u ) ` X ) + 1 ) e. NN0 /\ ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) e. ( Base ` R ) ) ) -> ( ( ( u ` X ) + ( ( ( d oF - u ) ` X ) + 1 ) ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) = ( ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ( +g ` R ) ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) |
313 |
307 293 310 311 312
|
syl13anc |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( ( u ` X ) + ( ( ( d oF - u ) ` X ) + 1 ) ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) = ( ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ( +g ` R ) ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) |
314 |
306 313
|
eqtrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) = ( ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ( +g ` R ) ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) |
315 |
314
|
mpteq2dva |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) = ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ( +g ` R ) ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) |
316 |
315
|
oveq2d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ( +g ` R ) ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
317 |
|
difssd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
318 |
221 317
|
ssfid |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) e. Fin ) |
319 |
10 24 222 292 272
|
mulgnn0cld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. ( Base ` R ) ) |
320 |
284 319
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. ( Base ` R ) ) |
321 |
10 24 222 309 272
|
mulgnn0cld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. ( Base ` R ) ) |
322 |
284 321
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) -> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. ( Base ` R ) ) |
323 |
|
eqid |
|- ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) = ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
324 |
|
eqid |
|- ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) = ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
325 |
10 11 14 318 320 322 323 324
|
gsummptfidmadd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ( +g ` R ) ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
326 |
316 325
|
eqtrd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
327 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> X e. I ) |
328 |
65
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> d Fn I ) |
329 |
|
elrabi |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } -> u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
330 |
329 124
|
syl |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } -> u Fn I ) |
331 |
330
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> u Fn I ) |
332 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> I e. V ) |
333 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) /\ X e. I ) -> ( d ` X ) = ( d ` X ) ) |
334 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) /\ X e. I ) -> ( u ` X ) = ( u ` X ) ) |
335 |
328 331 332 332 72 333 334
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) /\ X e. I ) -> ( ( d oF - u ) ` X ) = ( ( d ` X ) - ( u ` X ) ) ) |
336 |
327 335
|
mpdan |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> ( ( d oF - u ) ` X ) = ( ( d ` X ) - ( u ` X ) ) ) |
337 |
|
fveq1 |
|- ( k = u -> ( k ` X ) = ( u ` X ) ) |
338 |
337
|
eqeq1d |
|- ( k = u -> ( ( k ` X ) = 0 <-> ( u ` X ) = 0 ) ) |
339 |
119 338
|
anbi12d |
|- ( k = u -> ( ( k oR <_ d /\ ( k ` X ) = 0 ) <-> ( u oR <_ d /\ ( u ` X ) = 0 ) ) ) |
340 |
339
|
elrab |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } <-> ( u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( u oR <_ d /\ ( u ` X ) = 0 ) ) ) |
341 |
340
|
simprbi |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } -> ( u oR <_ d /\ ( u ` X ) = 0 ) ) |
342 |
341
|
simprd |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } -> ( u ` X ) = 0 ) |
343 |
342
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> ( u ` X ) = 0 ) |
344 |
343
|
oveq2d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> ( ( d ` X ) - ( u ` X ) ) = ( ( d ` X ) - 0 ) ) |
345 |
31
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> ( d ` X ) e. NN0 ) |
346 |
345
|
nn0cnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> ( d ` X ) e. CC ) |
347 |
346
|
subid1d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> ( ( d ` X ) - 0 ) = ( d ` X ) ) |
348 |
336 344 347
|
3eqtrrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> ( d ` X ) = ( ( d oF - u ) ` X ) ) |
349 |
348
|
oveq1d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> ( ( d ` X ) + 1 ) = ( ( ( d oF - u ) ` X ) + 1 ) ) |
350 |
349
|
oveq1d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) = ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
351 |
350
|
mpteq2dva |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) = ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) |
352 |
351
|
oveq2d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) |
353 |
326 352
|
oveq12d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) = ( ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
354 |
25
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> R e. Grp ) |
355 |
106
|
rabex |
|- { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } e. _V |
356 |
355
|
difexi |
|- ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) e. _V |
357 |
356
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) e. _V ) |
358 |
320
|
fmpttd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) : ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) --> ( Base ` R ) ) |
359 |
|
ovex |
|- ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. _V |
360 |
359 323
|
fnmpti |
|- ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) Fn ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |
361 |
360
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) Fn ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) |
362 |
361 318 113
|
fndmfifsupp |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) finSupp ( 0g ` R ) ) |
363 |
10 104 14 357 358 362
|
gsumcl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) e. ( Base ` R ) ) |
364 |
322
|
fmpttd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) : ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) --> ( Base ` R ) ) |
365 |
|
ovex |
|- ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. _V |
366 |
365 324
|
fnmpti |
|- ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) Fn ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |
367 |
366
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) Fn ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) |
368 |
367 318 113
|
fndmfifsupp |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) finSupp ( 0g ` R ) ) |
369 |
10 104 14 357 364 368
|
gsumcl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) e. ( Base ` R ) ) |
370 |
106
|
rabex |
|- { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } e. _V |
371 |
370
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } e. _V ) |
372 |
278
|
sseli |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } -> u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
373 |
372 321
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) -> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. ( Base ` R ) ) |
374 |
373
|
fmpttd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) : { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } --> ( Base ` R ) ) |
375 |
|
eqid |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) = ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
376 |
365 375
|
fnmpti |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) Fn { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |
377 |
376
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) Fn { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |
378 |
221 279
|
ssfid |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } e. Fin ) |
379 |
377 378 113
|
fndmfifsupp |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) finSupp ( 0g ` R ) ) |
380 |
10 104 14 371 374 379
|
gsumcl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) e. ( Base ` R ) ) |
381 |
10 11 354 363 369 380
|
grpassd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) ) |
382 |
283 353 381
|
3eqtrd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) ) |
383 |
219 382
|
oveq12d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) ) ) |
384 |
103 115 383
|
3eqtr3d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) ) ) |
385 |
8
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> F e. B ) |
386 |
9
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> G e. B ) |
387 |
1 2 35 4 16 385 386 21
|
psrmulval |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( F .x. G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) |
388 |
387
|
oveq2d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F .x. G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( ( ( d ` X ) + 1 ) ( .g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) |
389 |
107
|
difexi |
|- ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) e. _V |
390 |
389
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) e. _V ) |
391 |
|
eldifi |
|- ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
392 |
39 123
|
syl |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } -> u : I --> NN0 ) |
393 |
392
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> u : I --> NN0 ) |
394 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> X e. I ) |
395 |
393 394
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( u ` X ) e. NN0 ) |
396 |
10 24 27 395 50
|
mulgnn0cld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. ( Base ` R ) ) |
397 |
391 396
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. ( Base ` R ) ) |
398 |
397
|
fmpttd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) : ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) --> ( Base ` R ) ) |
399 |
|
eqid |
|- ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) = ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
400 |
359 399
|
fnmpti |
|- ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) Fn ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
401 |
400
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) Fn ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
402 |
|
difssd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
403 |
23 402
|
ssfid |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) e. Fin ) |
404 |
401 403 113
|
fndmfifsupp |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) finSupp ( 0g ` R ) ) |
405 |
10 104 14 390 398 404
|
gsumcl |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) e. ( Base ` R ) ) |
406 |
10 11 354 369 380
|
grpcld |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) e. ( Base ` R ) ) |
407 |
10 11 354 405 363 406
|
grpassd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) ) ) |
408 |
384 388 407
|
3eqtr4d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F .x. G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) ) |
409 |
408
|
mpteq2dva |
|- ( ph -> ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F .x. G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) = ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) ) ) |
410 |
1 2 4 12 8 9
|
psrmulcl |
|- ( ph -> ( F .x. G ) e. B ) |
411 |
1 2 16 5 6 7 410
|
psdval |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( F .x. G ) ) = ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( d ` X ) + 1 ) ( .g ` R ) ( ( F .x. G ) ` ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
412 |
25
|
grpmgmd |
|- ( ph -> R e. Mgm ) |
413 |
1 2 5 412 7 8
|
psdcl |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` F ) e. B ) |
414 |
1 2 4 12 413 9
|
psrmulcl |
|- ( ph -> ( ( ( ( I mPSDer R ) ` X ) ` F ) .x. G ) e. B ) |
415 |
1 2 5 412 7 9
|
psdcl |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` G ) e. B ) |
416 |
1 2 4 12 8 415
|
psrmulcl |
|- ( ph -> ( F .x. ( ( ( I mPSDer R ) ` X ) ` G ) ) e. B ) |
417 |
1 2 11 3 414 416
|
psradd |
|- ( ph -> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) .x. G ) .+ ( F .x. ( ( ( I mPSDer R ) ` X ) ` G ) ) ) = ( ( ( ( ( I mPSDer R ) ` X ) ` F ) .x. G ) oF ( +g ` R ) ( F .x. ( ( ( I mPSDer R ) ` X ) ` G ) ) ) ) |
418 |
1 10 16 2 414
|
psrelbas |
|- ( ph -> ( ( ( ( I mPSDer R ) ` X ) ` F ) .x. G ) : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
419 |
418
|
ffnd |
|- ( ph -> ( ( ( ( I mPSDer R ) ` X ) ` F ) .x. G ) Fn { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
420 |
1 10 16 2 416
|
psrelbas |
|- ( ph -> ( F .x. ( ( ( I mPSDer R ) ` X ) ` G ) ) : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
421 |
420
|
ffnd |
|- ( ph -> ( F .x. ( ( ( I mPSDer R ) ` X ) ` G ) ) Fn { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
422 |
106
|
a1i |
|- ( ph -> { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V ) |
423 |
|
inidm |
|- ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } i^i { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
424 |
413
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( I mPSDer R ) ` X ) ` F ) e. B ) |
425 |
1 2 35 4 16 424 386 15
|
psrmulval |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) .x. G ) ` d ) = ( R gsum ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) ) ) |
426 |
355
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } e. _V ) |
427 |
12
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> R e. Ring ) |
428 |
|
elrabi |
|- ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
429 |
1 10 16 2 413
|
psrelbas |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` F ) : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
430 |
429
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( I mPSDer R ) ` X ) ` F ) : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
431 |
430
|
ffvelcdmda |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) e. ( Base ` R ) ) |
432 |
428 431
|
sylan2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) e. ( Base ` R ) ) |
433 |
42
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> G : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
434 |
16 243
|
psrbagconcl |
|- ( ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF - b ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
435 |
434
|
adantll |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF - b ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
436 |
|
elrabi |
|- ( ( d oF - b ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> ( d oF - b ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
437 |
435 436
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( d oF - b ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
438 |
433 437
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( G ` ( d oF - b ) ) e. ( Base ` R ) ) |
439 |
10 35 427 432 438
|
ringcld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) e. ( Base ` R ) ) |
440 |
439
|
fmpttd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) : { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } --> ( Base ` R ) ) |
441 |
|
ovex |
|- ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) e. _V |
442 |
|
eqid |
|- ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) = ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) |
443 |
441 442
|
fnmpti |
|- ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) Fn { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |
444 |
443
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) Fn { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
445 |
444 221 113
|
fndmfifsupp |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) finSupp ( 0g ` R ) ) |
446 |
|
eqid |
|- ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
447 |
|
df-of |
|- oF + = ( m e. _V , n e. _V |-> ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) ) |
448 |
|
vex |
|- u e. _V |
449 |
448
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> u e. _V ) |
450 |
|
ssv |
|- { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } C_ _V |
451 |
450
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } C_ _V ) |
452 |
|
ssv |
|- { ( y e. I |-> if ( y = X , 1 , 0 ) ) } C_ _V |
453 |
452
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { ( y e. I |-> if ( y = X , 1 , 0 ) ) } C_ _V ) |
454 |
447 449 451 453
|
elimampo |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) <-> E. m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) ) ) |
455 |
454
|
biimpa |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> E. m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) ) |
456 |
|
elrabi |
|- ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> m e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
457 |
16
|
psrbagf |
|- ( m e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> m : I --> NN0 ) |
458 |
457
|
ffund |
|- ( m e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> Fun m ) |
459 |
456 458
|
syl |
|- ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> Fun m ) |
460 |
459
|
funfnd |
|- ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> m Fn dom m ) |
461 |
460
|
ad2antrl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> m Fn dom m ) |
462 |
|
velsn |
|- ( n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } <-> n = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) |
463 |
|
funmpt |
|- Fun ( y e. I |-> if ( y = X , 1 , 0 ) ) |
464 |
|
funeq |
|- ( n = ( y e. I |-> if ( y = X , 1 , 0 ) ) -> ( Fun n <-> Fun ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
465 |
463 464
|
mpbiri |
|- ( n = ( y e. I |-> if ( y = X , 1 , 0 ) ) -> Fun n ) |
466 |
465
|
funfnd |
|- ( n = ( y e. I |-> if ( y = X , 1 , 0 ) ) -> n Fn dom n ) |
467 |
462 466
|
sylbi |
|- ( n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } -> n Fn dom n ) |
468 |
467
|
ad2antll |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> n Fn dom n ) |
469 |
|
vex |
|- m e. _V |
470 |
469
|
dmex |
|- dom m e. _V |
471 |
470
|
a1i |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> dom m e. _V ) |
472 |
|
vex |
|- n e. _V |
473 |
472
|
dmex |
|- dom n e. _V |
474 |
473
|
a1i |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> dom n e. _V ) |
475 |
|
eqid |
|- ( dom m i^i dom n ) = ( dom m i^i dom n ) |
476 |
|
eqidd |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ o e. dom m ) -> ( m ` o ) = ( m ` o ) ) |
477 |
|
eqidd |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ o e. dom n ) -> ( n ` o ) = ( n ` o ) ) |
478 |
461 468 471 474 475 476 477
|
offval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( m oF + n ) = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) ) |
479 |
478
|
eqeq2d |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( m oF + n ) <-> u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) ) ) |
480 |
|
elsni |
|- ( n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } -> n = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) |
481 |
480
|
oveq2d |
|- ( n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } -> ( m oF + n ) = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
482 |
481
|
eqeq2d |
|- ( n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } -> ( u = ( m oF + n ) <-> u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
483 |
482
|
ad2antll |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( m oF + n ) <-> u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
484 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> I e. V ) |
485 |
456 457
|
syl |
|- ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> m : I --> NN0 ) |
486 |
485
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> m : I --> NN0 ) |
487 |
131
|
a1i |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) : I --> NN0 ) |
488 |
|
nn0cn |
|- ( q e. NN0 -> q e. CC ) |
489 |
|
nn0cn |
|- ( r e. NN0 -> r e. CC ) |
490 |
|
nn0cn |
|- ( s e. NN0 -> s e. CC ) |
491 |
|
addsubass |
|- ( ( q e. CC /\ r e. CC /\ s e. CC ) -> ( ( q + r ) - s ) = ( q + ( r - s ) ) ) |
492 |
488 489 490 491
|
syl3an |
|- ( ( q e. NN0 /\ r e. NN0 /\ s e. NN0 ) -> ( ( q + r ) - s ) = ( q + ( r - s ) ) ) |
493 |
492
|
adantl |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ ( q e. NN0 /\ r e. NN0 /\ s e. NN0 ) ) -> ( ( q + r ) - s ) = ( q + ( r - s ) ) ) |
494 |
484 486 487 487 493
|
caofass |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( m oF + ( ( y e. I |-> if ( y = X , 1 , 0 ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
495 |
|
simpr |
|- ( ( ph /\ i e. I ) -> i e. I ) |
496 |
56
|
a1i |
|- ( ( ph /\ i e. I ) -> if ( i = X , 1 , 0 ) e. NN0 ) |
497 |
68 76 495 496
|
fvmptd3 |
|- ( ( ph /\ i e. I ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` i ) = if ( i = X , 1 , 0 ) ) |
498 |
133 133 5 5 72 497 497
|
offval |
|- ( ph -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) ) |
499 |
498
|
oveq2d |
|- ( ph -> ( m oF + ( ( y e. I |-> if ( y = X , 1 , 0 ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( m oF + ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) ) ) |
500 |
499
|
ad3antrrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( ( y e. I |-> if ( y = X , 1 , 0 ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( m oF + ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) ) ) |
501 |
237
|
subidi |
|- ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) = 0 |
502 |
501
|
mpteq2i |
|- ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) = ( i e. I |-> 0 ) |
503 |
|
fconstmpt |
|- ( I X. { 0 } ) = ( i e. I |-> 0 ) |
504 |
502 503
|
eqtr4i |
|- ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) = ( I X. { 0 } ) |
505 |
504
|
oveq2i |
|- ( m oF + ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) ) = ( m oF + ( I X. { 0 } ) ) |
506 |
|
0zd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> 0 e. ZZ ) |
507 |
488
|
addridd |
|- ( q e. NN0 -> ( q + 0 ) = q ) |
508 |
507
|
adantl |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ q e. NN0 ) -> ( q + 0 ) = q ) |
509 |
484 486 506 508
|
caofid0r |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( I X. { 0 } ) ) = m ) |
510 |
505 509
|
eqtrid |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) ) = m ) |
511 |
494 500 510
|
3eqtrd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = m ) |
512 |
|
simpr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
513 |
511 512
|
eqeltrd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
514 |
|
oveq1 |
|- ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
515 |
514
|
eleq1d |
|- ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } <-> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
516 |
513 515
|
syl5ibrcom |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
517 |
516
|
adantrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
518 |
483 517
|
sylbid |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( m oF + n ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
519 |
479 518
|
sylbird |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
520 |
519
|
rexlimdvva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( E. m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
521 |
455 520
|
mpd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
522 |
|
simpr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
523 |
5
|
mptexd |
|- ( ph -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. _V ) |
524 |
|
elsng |
|- ( ( y e. I |-> if ( y = X , 1 , 0 ) ) e. _V -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } <-> ( y e. I |-> if ( y = X , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
525 |
523 524
|
syl |
|- ( ph -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } <-> ( y e. I |-> if ( y = X , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
526 |
68 525
|
mpbiri |
|- ( ph -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) |
527 |
526
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) |
528 |
447
|
mpofun |
|- Fun oF + |
529 |
528
|
a1i |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> Fun oF + ) |
530 |
|
xpss |
|- ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) C_ ( _V X. _V ) |
531 |
470
|
inex1 |
|- ( dom m i^i dom n ) e. _V |
532 |
531
|
mptex |
|- ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) e. _V |
533 |
532
|
rgen2w |
|- A. m e. _V A. n e. _V ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) e. _V |
534 |
447
|
dmmpoga |
|- ( A. m e. _V A. n e. _V ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) e. _V -> dom oF + = ( _V X. _V ) ) |
535 |
533 534
|
mp1i |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> dom oF + = ( _V X. _V ) ) |
536 |
530 535
|
sseqtrrid |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) C_ dom oF + ) |
537 |
522 527 529 536
|
elovimad |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) |
538 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> I e. V ) |
539 |
|
elrabi |
|- ( v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> v e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
540 |
16
|
psrbagf |
|- ( v e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> v : I --> NN0 ) |
541 |
539 540
|
syl |
|- ( v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> v : I --> NN0 ) |
542 |
541
|
ad2antll |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> v : I --> NN0 ) |
543 |
131
|
a1i |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) : I --> NN0 ) |
544 |
492
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) /\ ( q e. NN0 /\ r e. NN0 /\ s e. NN0 ) ) -> ( ( q + r ) - s ) = ( q + ( r - s ) ) ) |
545 |
538 542 543 543 544
|
caofass |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( v oF + ( ( y e. I |-> if ( y = X , 1 , 0 ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
546 |
133
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) Fn I ) |
547 |
78
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) /\ i e. I ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` i ) = if ( i = X , 1 , 0 ) ) |
548 |
546 546 538 538 72 547 547
|
offval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) ) |
549 |
548
|
oveq2d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( v oF + ( ( y e. I |-> if ( y = X , 1 , 0 ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( v oF + ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) ) ) |
550 |
504
|
oveq2i |
|- ( v oF + ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) ) = ( v oF + ( I X. { 0 } ) ) |
551 |
|
0zd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> 0 e. ZZ ) |
552 |
|
nn0cn |
|- ( p e. NN0 -> p e. CC ) |
553 |
552
|
addridd |
|- ( p e. NN0 -> ( p + 0 ) = p ) |
554 |
553
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) /\ p e. NN0 ) -> ( p + 0 ) = p ) |
555 |
538 542 551 554
|
caofid0r |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( v oF + ( I X. { 0 } ) ) = v ) |
556 |
550 555
|
eqtrid |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( v oF + ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) ) = v ) |
557 |
545 549 556
|
3eqtrrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> v = ( ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
558 |
|
oveq1 |
|- ( u = ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
559 |
558
|
eqeq2d |
|- ( u = ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( v = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> v = ( ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
560 |
557 559
|
syl5ibrcom |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( u = ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> v = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
561 |
18
|
ad3antrrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
562 |
16
|
psrbagaddcl |
|- ( ( m e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
563 |
456 561 562
|
syl2an2 |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
564 |
16
|
psrbagf |
|- ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) : I --> NN0 ) |
565 |
563 564
|
syl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) : I --> NN0 ) |
566 |
565
|
adantrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) : I --> NN0 ) |
567 |
|
feq1 |
|- ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u : I --> NN0 <-> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) : I --> NN0 ) ) |
568 |
566 567
|
syl5ibrcom |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> u : I --> NN0 ) ) |
569 |
483 568
|
sylbid |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( m oF + n ) -> u : I --> NN0 ) ) |
570 |
479 569
|
sylbird |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) -> u : I --> NN0 ) ) |
571 |
570
|
rexlimdvva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( E. m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) -> u : I --> NN0 ) ) |
572 |
455 571
|
mpd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> u : I --> NN0 ) |
573 |
572
|
adantrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> u : I --> NN0 ) |
574 |
573
|
ffvelcdmda |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) /\ i e. I ) -> ( u ` i ) e. NN0 ) |
575 |
574
|
nn0cnd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) /\ i e. I ) -> ( u ` i ) e. CC ) |
576 |
237
|
a1i |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) /\ i e. I ) -> if ( i = X , 1 , 0 ) e. CC ) |
577 |
575 576
|
npcand |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) /\ i e. I ) -> ( ( ( u ` i ) - if ( i = X , 1 , 0 ) ) + if ( i = X , 1 , 0 ) ) = ( u ` i ) ) |
578 |
577
|
mpteq2dva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( i e. I |-> ( ( ( u ` i ) - if ( i = X , 1 , 0 ) ) + if ( i = X , 1 , 0 ) ) ) = ( i e. I |-> ( u ` i ) ) ) |
579 |
573
|
ffnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> u Fn I ) |
580 |
579 546 538 538 72
|
offn |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) Fn I ) |
581 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) /\ i e. I ) -> ( u ` i ) = ( u ` i ) ) |
582 |
579 546 538 538 72 581 547
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) /\ i e. I ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( u ` i ) - if ( i = X , 1 , 0 ) ) ) |
583 |
580 546 538 538 72 582 547
|
offval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( i e. I |-> ( ( ( u ` i ) - if ( i = X , 1 , 0 ) ) + if ( i = X , 1 , 0 ) ) ) ) |
584 |
573
|
feqmptd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> u = ( i e. I |-> ( u ` i ) ) ) |
585 |
578 583 584
|
3eqtr4rd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> u = ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
586 |
|
oveq1 |
|- ( v = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
587 |
586
|
eqeq2d |
|- ( v = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u = ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> u = ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
588 |
585 587
|
syl5ibrcom |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( v = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> u = ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
589 |
560 588
|
impbid |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) /\ v e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) -> ( u = ( v oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> v = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
590 |
446 521 537 589
|
f1o2d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) : ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -1-1-onto-> { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
591 |
10 104 14 426 440 445 590
|
gsumf1o |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) ) = ( R gsum ( ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) o. ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
592 |
553
|
adantl |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ p e. NN0 ) -> ( p + 0 ) = p ) |
593 |
484 486 506 592
|
caofid0r |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( I X. { 0 } ) ) = m ) |
594 |
505 593
|
eqtrid |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( i e. I |-> ( if ( i = X , 1 , 0 ) - if ( i = X , 1 , 0 ) ) ) ) = m ) |
595 |
494 500 594
|
3eqtrd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = m ) |
596 |
595 512
|
eqeltrd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
597 |
596 515
|
syl5ibrcom |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
598 |
597
|
adantrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
599 |
483 598
|
sylbid |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( m oF + n ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
600 |
479 599
|
sylbird |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
601 |
600
|
rexlimdvva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( E. m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) |
602 |
455 601
|
mpd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
603 |
|
eqidd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
604 |
|
eqidd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) = ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) ) |
605 |
|
fveq2 |
|- ( b = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) = ( ( ( ( I mPSDer R ) ` X ) ` F ) ` ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
606 |
|
oveq2 |
|- ( b = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( d oF - b ) = ( d oF - ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
607 |
606
|
fveq2d |
|- ( b = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( G ` ( d oF - b ) ) = ( G ` ( d oF - ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
608 |
605 607
|
oveq12d |
|- ( b = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) = ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( .r ` R ) ( G ` ( d oF - ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) |
609 |
602 603 604 608
|
fmptco |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) o. ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( .r ` R ) ( G ` ( d oF - ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) ) |
610 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> I e. V ) |
611 |
6
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> R e. CRing ) |
612 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> X e. I ) |
613 |
8
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> F e. B ) |
614 |
|
elrabi |
|- ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
615 |
602 614
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
616 |
1 2 16 610 611 612 613 615
|
psdcoef |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( ( ( I mPSDer R ) ` X ) ` F ) ` ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( ( ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) + 1 ) ( .g ` R ) ( F ` ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
617 |
572
|
ffnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> u Fn I ) |
618 |
131
|
a1i |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) : I --> NN0 ) |
619 |
618
|
ffnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) Fn I ) |
620 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ X e. I ) -> ( u ` X ) = ( u ` X ) ) |
621 |
|
iftrue |
|- ( y = X -> if ( y = X , 1 , 0 ) = 1 ) |
622 |
|
1ex |
|- 1 e. _V |
623 |
621 68 622
|
fvmpt |
|- ( X e. I -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` X ) = 1 ) |
624 |
623
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ X e. I ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` X ) = 1 ) |
625 |
617 619 610 610 72 620 624
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ X e. I ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = ( ( u ` X ) - 1 ) ) |
626 |
612 625
|
mpdan |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = ( ( u ` X ) - 1 ) ) |
627 |
626
|
oveq1d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) + 1 ) = ( ( ( u ` X ) - 1 ) + 1 ) ) |
628 |
|
nn0sscn |
|- NN0 C_ CC |
629 |
628
|
a1i |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> NN0 C_ CC ) |
630 |
572 629
|
fssd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> u : I --> CC ) |
631 |
630 612
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( u ` X ) e. CC ) |
632 |
|
1cnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> 1 e. CC ) |
633 |
631 632
|
npcand |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( ( u ` X ) - 1 ) + 1 ) = ( u ` X ) ) |
634 |
627 633
|
eqtrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) + 1 ) = ( u ` X ) ) |
635 |
617 619 610 610 72
|
offn |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) Fn I ) |
636 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( u ` i ) = ( u ` i ) ) |
637 |
78
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` i ) = if ( i = X , 1 , 0 ) ) |
638 |
617 619 610 610 72 636 637
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( u ` i ) - if ( i = X , 1 , 0 ) ) ) |
639 |
572
|
ffvelcdmda |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( u ` i ) e. NN0 ) |
640 |
639
|
nn0cnd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( u ` i ) e. CC ) |
641 |
237
|
a1i |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> if ( i = X , 1 , 0 ) e. CC ) |
642 |
640 641
|
npcand |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( ( ( u ` i ) - if ( i = X , 1 , 0 ) ) + if ( i = X , 1 , 0 ) ) = ( u ` i ) ) |
643 |
610 635 619 617 638 637 642
|
offveq |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = u ) |
644 |
643
|
fveq2d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( F ` ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( F ` u ) ) |
645 |
634 644
|
oveq12d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) + 1 ) ( .g ` R ) ( F ` ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( ( u ` X ) ( .g ` R ) ( F ` u ) ) ) |
646 |
616 645
|
eqtrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( ( ( I mPSDer R ) ` X ) ` F ) ` ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( ( u ` X ) ( .g ` R ) ( F ` u ) ) ) |
647 |
28
|
ad2antlr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> d : I --> NN0 ) |
648 |
647
|
ffvelcdmda |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( d ` i ) e. NN0 ) |
649 |
648
|
nn0cnd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( d ` i ) e. CC ) |
650 |
649 640 641
|
subsub3d |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( ( d ` i ) - ( ( u ` i ) - if ( i = X , 1 , 0 ) ) ) = ( ( ( d ` i ) + if ( i = X , 1 , 0 ) ) - ( u ` i ) ) ) |
651 |
650
|
mpteq2dva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( i e. I |-> ( ( d ` i ) - ( ( u ` i ) - if ( i = X , 1 , 0 ) ) ) ) = ( i e. I |-> ( ( ( d ` i ) + if ( i = X , 1 , 0 ) ) - ( u ` i ) ) ) ) |
652 |
65
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> d Fn I ) |
653 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( d ` i ) = ( d ` i ) ) |
654 |
652 635 610 610 72 653 638
|
offval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( d oF - ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( i e. I |-> ( ( d ` i ) - ( ( u ` i ) - if ( i = X , 1 , 0 ) ) ) ) ) |
655 |
652 619 610 610 72
|
offn |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) Fn I ) |
656 |
652 619 610 610 72 653 637
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ i e. I ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
657 |
655 617 610 610 72 656 636
|
offval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) = ( i e. I |-> ( ( ( d ` i ) + if ( i = X , 1 , 0 ) ) - ( u ` i ) ) ) ) |
658 |
651 654 657
|
3eqtr4d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( d oF - ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) |
659 |
658
|
fveq2d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( G ` ( d oF - ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) |
660 |
646 659
|
oveq12d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( .r ` R ) ( G ` ( d oF - ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) = ( ( ( u ` X ) ( .g ` R ) ( F ` u ) ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) |
661 |
12
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> R e. Ring ) |
662 |
572 612
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( u ` X ) e. NN0 ) |
663 |
662
|
nn0zd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( u ` X ) e. ZZ ) |
664 |
37
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> F : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
665 |
|
simpllr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
666 |
18
|
ad3antrrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
667 |
|
simprl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
668 |
|
eqid |
|- { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } = { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |
669 |
16 243 668
|
psrbagleadd1 |
|- ( ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
670 |
665 666 667 669
|
syl3anc |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
671 |
|
eleq1 |
|- ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } <-> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) ) |
672 |
670 671
|
syl5ibrcom |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> u e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) ) |
673 |
483 672
|
sylbid |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( m oF + n ) -> u e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) ) |
674 |
479 673
|
sylbird |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) /\ ( m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) -> ( u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) -> u e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) ) |
675 |
674
|
rexlimdvva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( E. m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) -> u e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) ) |
676 |
455 675
|
mpd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> u e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
677 |
|
elrabi |
|- ( u e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } -> u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
678 |
676 677
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
679 |
664 678
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( F ` u ) e. ( Base ` R ) ) |
680 |
42
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> G : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
681 |
21
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
682 |
16 668
|
psrbagconcl |
|- ( ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ u e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
683 |
681 676 682
|
syl2anc |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
684 |
|
elrabi |
|- ( ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { l e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | l oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
685 |
683 684
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
686 |
680 685
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) e. ( Base ` R ) ) |
687 |
10 24 35
|
mulgass2 |
|- ( ( R e. Ring /\ ( ( u ` X ) e. ZZ /\ ( F ` u ) e. ( Base ` R ) /\ ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) e. ( Base ` R ) ) ) -> ( ( ( u ` X ) ( .g ` R ) ( F ` u ) ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) = ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
688 |
661 663 679 686 687
|
syl13anc |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( ( u ` X ) ( .g ` R ) ( F ` u ) ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) = ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
689 |
660 688
|
eqtrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( .r ` R ) ( G ` ( d oF - ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) = ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
690 |
689
|
mpteq2dva |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ( .r ` R ) ( G ` ( d oF - ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) ) = ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) |
691 |
609 690
|
eqtrd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) o. ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) |
692 |
691
|
oveq2d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) o. ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) = ( R gsum ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) |
693 |
|
snex |
|- { ( y e. I |-> if ( y = X , 1 , 0 ) ) } e. _V |
694 |
355 693
|
xpex |
|- ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) e. _V |
695 |
694
|
funimaex |
|- ( Fun oF + -> ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) e. _V ) |
696 |
528 695
|
mp1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) e. _V ) |
697 |
26
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> R e. Mnd ) |
698 |
10 35 661 679 686
|
ringcld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) e. ( Base ` R ) ) |
699 |
10 24 697 662 698
|
mulgnn0cld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) ) -> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) e. ( Base ` R ) ) |
700 |
|
eqid |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) = ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
701 |
359 700
|
fnmpti |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) Fn { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |
702 |
701
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) Fn { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
703 |
702 23 113
|
fndmfifsupp |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) finSupp ( 0g ` R ) ) |
704 |
460
|
ad2antlr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) -> m Fn dom m ) |
705 |
467
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) -> n Fn dom n ) |
706 |
470
|
a1i |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) -> dom m e. _V ) |
707 |
473
|
a1i |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) -> dom n e. _V ) |
708 |
|
eqidd |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) /\ o e. dom m ) -> ( m ` o ) = ( m ` o ) ) |
709 |
|
eqidd |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) /\ o e. dom n ) -> ( n ` o ) = ( n ` o ) ) |
710 |
704 705 706 707 475 708 709
|
offval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) -> ( m oF + n ) = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) ) |
711 |
710
|
eqeq2d |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) -> ( u = ( m oF + n ) <-> u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) ) ) |
712 |
711
|
rexbidva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( m oF + n ) <-> E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) ) ) |
713 |
18
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
714 |
|
oveq2 |
|- ( n = ( y e. I |-> if ( y = X , 1 , 0 ) ) -> ( m oF + n ) = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
715 |
714
|
eqeq2d |
|- ( n = ( y e. I |-> if ( y = X , 1 , 0 ) ) -> ( u = ( m oF + n ) <-> u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
716 |
715
|
rexsng |
|- ( ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> ( E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( m oF + n ) <-> u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
717 |
713 716
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( m oF + n ) <-> u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
718 |
712 717
|
bitr3d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) <-> u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
719 |
718
|
rexbidva |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( E. m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } E. n e. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } u = ( o e. ( dom m i^i dom n ) |-> ( ( m ` o ) + ( n ` o ) ) ) <-> E. m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
720 |
|
breq1 |
|- ( k = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
721 |
|
breq1 |
|- ( k = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( k oR <_ d <-> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ d ) ) |
722 |
|
fveq1 |
|- ( k = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( k ` X ) = ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) ) |
723 |
722
|
eqeq1d |
|- ( k = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( ( k ` X ) = 0 <-> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = 0 ) ) |
724 |
721 723
|
anbi12d |
|- ( k = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( ( k oR <_ d /\ ( k ` X ) = 0 ) <-> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ d /\ ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = 0 ) ) ) |
725 |
724
|
notbid |
|- ( k = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( -. ( k oR <_ d /\ ( k ` X ) = 0 ) <-> -. ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ d /\ ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = 0 ) ) ) |
726 |
720 725
|
anbi12d |
|- ( k = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) <-> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ d /\ ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = 0 ) ) ) ) |
727 |
456 713 562
|
syl2an2 |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
728 |
|
simplr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
729 |
|
simpr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
730 |
16 243 44
|
psrbagleadd1 |
|- ( ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( y e. I |-> if ( y = X , 1 , 0 ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
731 |
728 713 729 730
|
syl3anc |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
732 |
720
|
elrab |
|- ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } <-> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
733 |
732
|
simprbi |
|- ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
734 |
731 733
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
735 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> X e. I ) |
736 |
485
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> m : I --> NN0 ) |
737 |
736
|
ffnd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> m Fn I ) |
738 |
133
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) Fn I ) |
739 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> I e. V ) |
740 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ X e. I ) -> ( m ` X ) = ( m ` X ) ) |
741 |
623
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ X e. I ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` X ) = 1 ) |
742 |
737 738 739 739 72 740 741
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) /\ X e. I ) -> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = ( ( m ` X ) + 1 ) ) |
743 |
735 742
|
mpdan |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = ( ( m ` X ) + 1 ) ) |
744 |
736 735
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m ` X ) e. NN0 ) |
745 |
|
nn0p1nn |
|- ( ( m ` X ) e. NN0 -> ( ( m ` X ) + 1 ) e. NN ) |
746 |
744 745
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( m ` X ) + 1 ) e. NN ) |
747 |
743 746
|
eqeltrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) e. NN ) |
748 |
747
|
nnne0d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) =/= 0 ) |
749 |
748
|
neneqd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> -. ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = 0 ) |
750 |
749
|
intnand |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> -. ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ d /\ ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = 0 ) ) |
751 |
734 750
|
jca |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ d /\ ( ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` X ) = 0 ) ) ) |
752 |
726 727 751
|
elrabd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) |
753 |
|
eleq1 |
|- ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } <-> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) ) |
754 |
752 753
|
syl5ibrcom |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) ) |
755 |
|
breq1 |
|- ( k = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( k oR <_ d <-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ d ) ) |
756 |
|
elrabi |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } -> u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
757 |
756
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
758 |
131
|
a1i |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) : I --> NN0 ) |
759 |
756 123
|
syl |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } -> u : I --> NN0 ) |
760 |
759
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> u : I --> NN0 ) |
761 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> X e. I ) |
762 |
760 761
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( u ` X ) e. NN0 ) |
763 |
339
|
notbid |
|- ( k = u -> ( -. ( k oR <_ d /\ ( k ` X ) = 0 ) <-> -. ( u oR <_ d /\ ( u ` X ) = 0 ) ) ) |
764 |
118 763
|
anbi12d |
|- ( k = u -> ( ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) <-> ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( u oR <_ d /\ ( u ` X ) = 0 ) ) ) ) |
765 |
764
|
elrab |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } <-> ( u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( u oR <_ d /\ ( u ` X ) = 0 ) ) ) ) |
766 |
765
|
simprbi |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } -> ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( u oR <_ d /\ ( u ` X ) = 0 ) ) ) |
767 |
766
|
simpld |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } -> u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
768 |
767
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
769 |
768
|
adantr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
770 |
756 124
|
syl |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } -> u Fn I ) |
771 |
770
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> u Fn I ) |
772 |
771
|
adantr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> u Fn I ) |
773 |
21
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
774 |
88
|
ffnd |
|- ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) Fn I ) |
775 |
773 774
|
syl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) Fn I ) |
776 |
775
|
adantr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) Fn I ) |
777 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> I e. V ) |
778 |
|
eqidd |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) -> ( u ` i ) = ( u ` i ) ) |
779 |
|
eqidd |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) ) |
780 |
772 776 777 777 72 778 779
|
ofrfval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> A. i e. I ( u ` i ) <_ ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) ) ) |
781 |
769 780
|
mpbid |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> A. i e. I ( u ` i ) <_ ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) ) |
782 |
781
|
r19.21bi |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) -> ( u ` i ) <_ ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) ) |
783 |
782
|
adantr |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) /\ i =/= X ) -> ( u ` i ) <_ ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) ) |
784 |
65
|
ad3antrrr |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i =/= X ) -> d Fn I ) |
785 |
69
|
a1i |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i =/= X ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) Fn I ) |
786 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i =/= X ) -> I e. V ) |
787 |
|
eqidd |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i =/= X ) /\ i e. I ) -> ( d ` i ) = ( d ` i ) ) |
788 |
78
|
adantl |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i =/= X ) /\ i e. I ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` i ) = if ( i = X , 1 , 0 ) ) |
789 |
784 785 786 786 72 787 788
|
ofval |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i =/= X ) /\ i e. I ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
790 |
789
|
an32s |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) /\ i =/= X ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
791 |
158
|
adantl |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) /\ i =/= X ) -> if ( i = X , 1 , 0 ) = 0 ) |
792 |
791
|
oveq2d |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) /\ i =/= X ) -> ( ( d ` i ) + if ( i = X , 1 , 0 ) ) = ( ( d ` i ) + 0 ) ) |
793 |
29
|
ad2antrr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> d : I --> NN0 ) |
794 |
793
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) -> ( d ` i ) e. NN0 ) |
795 |
794
|
adantr |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) /\ i =/= X ) -> ( d ` i ) e. NN0 ) |
796 |
795
|
nn0cnd |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) /\ i =/= X ) -> ( d ` i ) e. CC ) |
797 |
796
|
addridd |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) /\ i =/= X ) -> ( ( d ` i ) + 0 ) = ( d ` i ) ) |
798 |
790 792 797
|
3eqtrd |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) /\ i =/= X ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( d ` i ) ) |
799 |
783 798
|
breqtrd |
|- ( ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) /\ i =/= X ) -> ( u ` i ) <_ ( d ` i ) ) |
800 |
|
simpr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> ( u ` X ) = 0 ) |
801 |
29
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> d : I --> NN0 ) |
802 |
801 761
|
ffvelcdmd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( d ` X ) e. NN0 ) |
803 |
802
|
nn0ge0d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> 0 <_ ( d ` X ) ) |
804 |
803
|
adantr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> 0 <_ ( d ` X ) ) |
805 |
800 804
|
eqbrtrd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> ( u ` X ) <_ ( d ` X ) ) |
806 |
805
|
adantr |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) -> ( u ` X ) <_ ( d ` X ) ) |
807 |
175 799 806
|
pm2.61ne |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) -> ( u ` i ) <_ ( d ` i ) ) |
808 |
807
|
ralrimiva |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> A. i e. I ( u ` i ) <_ ( d ` i ) ) |
809 |
65
|
adantr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> d Fn I ) |
810 |
809
|
adantr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> d Fn I ) |
811 |
|
eqidd |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) /\ i e. I ) -> ( d ` i ) = ( d ` i ) ) |
812 |
772 810 777 777 72 778 811
|
ofrfval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> ( u oR <_ d <-> A. i e. I ( u ` i ) <_ ( d ` i ) ) ) |
813 |
808 812
|
mpbird |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ ( u ` X ) = 0 ) -> u oR <_ d ) |
814 |
813
|
ex |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( ( u ` X ) = 0 -> u oR <_ d ) ) |
815 |
766
|
simprd |
|- ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } -> -. ( u oR <_ d /\ ( u ` X ) = 0 ) ) |
816 |
815
|
adantl |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> -. ( u oR <_ d /\ ( u ` X ) = 0 ) ) |
817 |
|
imnan |
|- ( ( u oR <_ d -> -. ( u ` X ) = 0 ) <-> -. ( u oR <_ d /\ ( u ` X ) = 0 ) ) |
818 |
816 817
|
sylibr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( u oR <_ d -> -. ( u ` X ) = 0 ) ) |
819 |
818
|
con2d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( ( u ` X ) = 0 -> -. u oR <_ d ) ) |
820 |
814 819
|
pm2.65d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> -. ( u ` X ) = 0 ) |
821 |
820
|
neqned |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( u ` X ) =/= 0 ) |
822 |
762 821 191
|
sylanbrc |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( u ` X ) e. NN ) |
823 |
822
|
nnge1d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> 1 <_ ( u ` X ) ) |
824 |
823
|
adantr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> 1 <_ ( u ` X ) ) |
825 |
173
|
breq2d |
|- ( i = X -> ( 1 <_ ( u ` i ) <-> 1 <_ ( u ` X ) ) ) |
826 |
824 825
|
syl5ibrcom |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( i = X -> 1 <_ ( u ` i ) ) ) |
827 |
826
|
imp |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) /\ i = X ) -> 1 <_ ( u ` i ) ) |
828 |
760
|
ffvelcdmda |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( u ` i ) e. NN0 ) |
829 |
828
|
nn0ge0d |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> 0 <_ ( u ` i ) ) |
830 |
829
|
adantr |
|- ( ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) /\ -. i = X ) -> 0 <_ ( u ` i ) ) |
831 |
827 830
|
ifpimpda |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> if- ( i = X , 1 <_ ( u ` i ) , 0 <_ ( u ` i ) ) ) |
832 |
|
brif1 |
|- ( if ( i = X , 1 , 0 ) <_ ( u ` i ) <-> if- ( i = X , 1 <_ ( u ` i ) , 0 <_ ( u ` i ) ) ) |
833 |
831 832
|
sylibr |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> if ( i = X , 1 , 0 ) <_ ( u ` i ) ) |
834 |
833
|
ralrimiva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> A. i e. I if ( i = X , 1 , 0 ) <_ ( u ` i ) ) |
835 |
69
|
a1i |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) Fn I ) |
836 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> I e. V ) |
837 |
78
|
adantl |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) ` i ) = if ( i = X , 1 , 0 ) ) |
838 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( u ` i ) = ( u ` i ) ) |
839 |
835 771 836 836 72 837 838
|
ofrfval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( ( y e. I |-> if ( y = X , 1 , 0 ) ) oR <_ u <-> A. i e. I if ( i = X , 1 , 0 ) <_ ( u ` i ) ) ) |
840 |
834 839
|
mpbird |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( y e. I |-> if ( y = X , 1 , 0 ) ) oR <_ u ) |
841 |
16
|
psrbagcon |
|- ( ( u e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( y e. I |-> if ( y = X , 1 , 0 ) ) : I --> NN0 /\ ( y e. I |-> if ( y = X , 1 , 0 ) ) oR <_ u ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ u ) ) |
842 |
757 758 840 841
|
syl3anc |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } /\ ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ u ) ) |
843 |
842
|
simpld |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
844 |
|
eqidd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( d ` i ) = ( d ` i ) ) |
845 |
809 835 836 836 72 844 837
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
846 |
771 775 836 836 72 838 845
|
ofrfval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( u oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) ) |
847 |
768 846
|
mpbid |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> A. i e. I ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
848 |
847
|
r19.21bi |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) |
849 |
828
|
nn0red |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( u ` i ) e. RR ) |
850 |
60
|
a1i |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> if ( i = X , 1 , 0 ) e. RR ) |
851 |
801
|
ffvelcdmda |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( d ` i ) e. NN0 ) |
852 |
851
|
nn0red |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( d ` i ) e. RR ) |
853 |
849 850 852
|
lesubaddd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( ( ( u ` i ) - if ( i = X , 1 , 0 ) ) <_ ( d ` i ) <-> ( u ` i ) <_ ( ( d ` i ) + if ( i = X , 1 , 0 ) ) ) ) |
854 |
848 853
|
mpbird |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( ( u ` i ) - if ( i = X , 1 , 0 ) ) <_ ( d ` i ) ) |
855 |
854
|
ralrimiva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> A. i e. I ( ( u ` i ) - if ( i = X , 1 , 0 ) ) <_ ( d ` i ) ) |
856 |
771 835 836 836 72
|
offn |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) Fn I ) |
857 |
771 835 836 836 72 838 837
|
ofval |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ` i ) = ( ( u ` i ) - if ( i = X , 1 , 0 ) ) ) |
858 |
856 809 836 836 72 857 844
|
ofrfval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ d <-> A. i e. I ( ( u ` i ) - if ( i = X , 1 , 0 ) ) <_ ( d ` i ) ) ) |
859 |
855 858
|
mpbird |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oR <_ d ) |
860 |
755 843 859
|
elrabd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |
861 |
828
|
nn0cnd |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( u ` i ) e. CC ) |
862 |
237
|
a1i |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> if ( i = X , 1 , 0 ) e. CC ) |
863 |
861 862
|
npcand |
|- ( ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) /\ i e. I ) -> ( ( ( u ` i ) - if ( i = X , 1 , 0 ) ) + if ( i = X , 1 , 0 ) ) = ( u ` i ) ) |
864 |
863
|
mpteq2dva |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( i e. I |-> ( ( ( u ` i ) - if ( i = X , 1 , 0 ) ) + if ( i = X , 1 , 0 ) ) ) = ( i e. I |-> ( u ` i ) ) ) |
865 |
856 835 836 836 72 857 837
|
offval |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( i e. I |-> ( ( ( u ` i ) - if ( i = X , 1 , 0 ) ) + if ( i = X , 1 , 0 ) ) ) ) |
866 |
760
|
feqmptd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> u = ( i e. I |-> ( u ` i ) ) ) |
867 |
864 865 866
|
3eqtr4rd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) -> u = ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
868 |
|
oveq1 |
|- ( m = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) = ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
869 |
868
|
eqeq2d |
|- ( m = ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) -> ( u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> u = ( ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) |
870 |
754 860 867 869
|
rspceb2dv |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( E. m e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } u = ( m oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) <-> u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) ) |
871 |
454 719 870
|
3bitrd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) <-> u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) ) |
872 |
871
|
eqrdv |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) = { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } ) |
873 |
|
difrab |
|- ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) = { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) /\ -. ( k oR <_ d /\ ( k ` X ) = 0 ) ) } |
874 |
872 873
|
eqtr4di |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) = ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) |
875 |
|
difssd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
876 |
874 875
|
eqsstrd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } ) |
877 |
703 876 113
|
fmptssfisupp |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) finSupp ( 0g ` R ) ) |
878 |
|
difss |
|- ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |
879 |
|
disjdif |
|- ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } i^i ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) = (/) |
880 |
|
ssdisj |
|- ( ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) C_ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } /\ ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } i^i ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) = (/) ) -> ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) i^i ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) = (/) ) |
881 |
878 879 880
|
mp2an |
|- ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) i^i ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) ) = (/) |
882 |
881
|
ineqcomi |
|- ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) i^i ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) = (/) |
883 |
882
|
a1i |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) i^i ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) = (/) ) |
884 |
279 99
|
psdmullem |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) u. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) = ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) |
885 |
874 884
|
eqtr4d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) = ( ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) u. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) ) ) |
886 |
10 104 11 14 696 699 877 883 885
|
gsumsplit2 |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
887 |
692 886
|
eqtrd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( ( b e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) ` b ) ( .r ` R ) ( G ` ( d oF - b ) ) ) ) o. ( u e. ( oF + " ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } X. { ( y e. I |-> if ( y = X , 1 , 0 ) ) } ) ) |-> ( u oF - ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
888 |
425 591 887
|
3eqtrd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) .x. G ) ` d ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
889 |
415
|
adantr |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( I mPSDer R ) ` X ) ` G ) e. B ) |
890 |
1 2 35 4 16 385 889 15
|
psrmulval |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( F .x. ( ( ( I mPSDer R ) ` X ) ` G ) ) ` d ) = ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( F ` u ) ( .r ` R ) ( ( ( ( I mPSDer R ) ` X ) ` G ) ` ( d oF - u ) ) ) ) ) ) |
891 |
6
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> R e. CRing ) |
892 |
9
|
ad2antrr |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> G e. B ) |
893 |
1 2 16 252 891 285 892 247
|
psdcoef |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( ( ( I mPSDer R ) ` X ) ` G ) ` ( d oF - u ) ) = ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( G ` ( ( d oF - u ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) ) |
894 |
267
|
fveq2d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( G ` ( ( d oF - u ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) = ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) |
895 |
894
|
oveq2d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( G ` ( ( d oF - u ) oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) ) = ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) |
896 |
893 895
|
eqtrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( ( ( I mPSDer R ) ` X ) ` G ) ` ( d oF - u ) ) = ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) |
897 |
896
|
oveq2d |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( F ` u ) ( .r ` R ) ( ( ( ( I mPSDer R ) ` X ) ` G ) ` ( d oF - u ) ) ) = ( ( F ` u ) ( .r ` R ) ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
898 |
309
|
nn0zd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( ( d oF - u ) ` X ) + 1 ) e. ZZ ) |
899 |
10 24 35
|
mulgass3 |
|- ( ( R e. Ring /\ ( ( ( ( d oF - u ) ` X ) + 1 ) e. ZZ /\ ( F ` u ) e. ( Base ` R ) /\ ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) e. ( Base ` R ) ) ) -> ( ( F ` u ) ( .r ` R ) ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) = ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
900 |
224 898 228 271 899
|
syl13anc |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( F ` u ) ( .r ` R ) ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) = ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
901 |
897 900
|
eqtrd |
|- ( ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) /\ u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) -> ( ( F ` u ) ( .r ` R ) ( ( ( ( I mPSDer R ) ` X ) ` G ) ` ( d oF - u ) ) ) = ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) |
902 |
901
|
mpteq2dva |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( F ` u ) ( .r ` R ) ( ( ( ( I mPSDer R ) ` X ) ` G ) ` ( d oF - u ) ) ) ) = ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) |
903 |
902
|
oveq2d |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( F ` u ) ( .r ` R ) ( ( ( ( I mPSDer R ) ` X ) ` G ) ` ( d oF - u ) ) ) ) ) = ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) |
904 |
10 11 14 221 321 275 282
|
gsummptfidmsplit |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
905 |
890 903 904
|
3eqtrd |
|- ( ( ph /\ d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( F .x. ( ( ( I mPSDer R ) ` X ) ` G ) ) ` d ) = ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) |
906 |
419 421 422 422 423 888 905
|
offval |
|- ( ph -> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) .x. G ) oF ( +g ` R ) ( F .x. ( ( ( I mPSDer R ) ` X ) ` G ) ) ) = ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) ) ) |
907 |
417 906
|
eqtrd |
|- ( ph -> ( ( ( ( ( I mPSDer R ) ` X ) ` F ) .x. G ) .+ ( F .x. ( ( ( I mPSDer R ) ` X ) ` G ) ) ) = ( d e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( u ` X ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ( +g ` R ) ( ( R gsum ( u e. ( { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | k oR <_ d } \ { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } ) |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ( +g ` R ) ( R gsum ( u e. { k e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( k oR <_ d /\ ( k ` X ) = 0 ) } |-> ( ( ( ( d oF - u ) ` X ) + 1 ) ( .g ` R ) ( ( F ` u ) ( .r ` R ) ( G ` ( ( d oF + ( y e. I |-> if ( y = X , 1 , 0 ) ) ) oF - u ) ) ) ) ) ) ) ) ) ) |
908 |
409 411 907
|
3eqtr4d |
|- ( ph -> ( ( ( I mPSDer R ) ` X ) ` ( F .x. G ) ) = ( ( ( ( ( I mPSDer R ) ` X ) ` F ) .x. G ) .+ ( F .x. ( ( ( I mPSDer R ) ` X ) ` G ) ) ) ) |