Step |
Hyp |
Ref |
Expression |
1 |
|
psdmullem.cb |
|- ( ph -> C C_ B ) |
2 |
|
psdmullem.ba |
|- ( ph -> B C_ A ) |
3 |
|
undif3 |
|- ( ( A \ B ) u. ( B \ C ) ) = ( ( ( A \ B ) u. B ) \ ( C \ ( A \ B ) ) ) |
4 |
|
undifr |
|- ( B C_ A <-> ( ( A \ B ) u. B ) = A ) |
5 |
2 4
|
sylib |
|- ( ph -> ( ( A \ B ) u. B ) = A ) |
6 |
|
difdif2 |
|- ( C \ ( A \ B ) ) = ( ( C \ A ) u. ( C i^i B ) ) |
7 |
1 2
|
sstrd |
|- ( ph -> C C_ A ) |
8 |
|
ssdif0 |
|- ( C C_ A <-> ( C \ A ) = (/) ) |
9 |
7 8
|
sylib |
|- ( ph -> ( C \ A ) = (/) ) |
10 |
|
dfss2 |
|- ( C C_ B <-> ( C i^i B ) = C ) |
11 |
1 10
|
sylib |
|- ( ph -> ( C i^i B ) = C ) |
12 |
9 11
|
uneq12d |
|- ( ph -> ( ( C \ A ) u. ( C i^i B ) ) = ( (/) u. C ) ) |
13 |
|
0un |
|- ( (/) u. C ) = C |
14 |
12 13
|
eqtrdi |
|- ( ph -> ( ( C \ A ) u. ( C i^i B ) ) = C ) |
15 |
6 14
|
eqtrid |
|- ( ph -> ( C \ ( A \ B ) ) = C ) |
16 |
5 15
|
difeq12d |
|- ( ph -> ( ( ( A \ B ) u. B ) \ ( C \ ( A \ B ) ) ) = ( A \ C ) ) |
17 |
3 16
|
eqtrid |
|- ( ph -> ( ( A \ B ) u. ( B \ C ) ) = ( A \ C ) ) |