| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pserf.g |  |-  G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) | 
						
							| 2 |  | pserf.f |  |-  F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) | 
						
							| 3 |  | pserf.a |  |-  ( ph -> A : NN0 --> CC ) | 
						
							| 4 |  | pserf.r |  |-  R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) | 
						
							| 5 |  | pserulm.h |  |-  H = ( i e. NN0 |-> ( y e. S |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) ) | 
						
							| 6 |  | pserulm.m |  |-  ( ph -> M e. RR ) | 
						
							| 7 |  | pserulm.l |  |-  ( ph -> M < R ) | 
						
							| 8 |  | pserulm.y |  |-  ( ph -> S C_ ( `' abs " ( 0 [,] M ) ) ) | 
						
							| 9 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 10 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 11 |  | cnvimass |  |-  ( `' abs " ( 0 [,] M ) ) C_ dom abs | 
						
							| 12 |  | absf |  |-  abs : CC --> RR | 
						
							| 13 | 12 | fdmi |  |-  dom abs = CC | 
						
							| 14 | 11 13 | sseqtri |  |-  ( `' abs " ( 0 [,] M ) ) C_ CC | 
						
							| 15 | 8 14 | sstrdi |  |-  ( ph -> S C_ CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> S C_ CC ) | 
						
							| 17 | 16 | resmptd |  |-  ( ( ph /\ i e. NN0 ) -> ( ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) |` S ) = ( y e. S |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) ) | 
						
							| 18 |  | simplr |  |-  ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. ( 0 ... i ) ) -> y e. CC ) | 
						
							| 19 |  | elfznn0 |  |-  ( k e. ( 0 ... i ) -> k e. NN0 ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. ( 0 ... i ) ) -> k e. NN0 ) | 
						
							| 21 | 1 | pserval2 |  |-  ( ( y e. CC /\ k e. NN0 ) -> ( ( G ` y ) ` k ) = ( ( A ` k ) x. ( y ^ k ) ) ) | 
						
							| 22 | 18 20 21 | syl2anc |  |-  ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. ( 0 ... i ) ) -> ( ( G ` y ) ` k ) = ( ( A ` k ) x. ( y ^ k ) ) ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ i e. NN0 ) -> i e. NN0 ) | 
						
							| 24 | 23 9 | eleqtrdi |  |-  ( ( ph /\ i e. NN0 ) -> i e. ( ZZ>= ` 0 ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) -> i e. ( ZZ>= ` 0 ) ) | 
						
							| 26 | 3 | adantr |  |-  ( ( ph /\ i e. NN0 ) -> A : NN0 --> CC ) | 
						
							| 27 | 26 | ffvelcdmda |  |-  ( ( ( ph /\ i e. NN0 ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) | 
						
							| 28 | 27 | adantlr |  |-  ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) | 
						
							| 29 |  | expcl |  |-  ( ( y e. CC /\ k e. NN0 ) -> ( y ^ k ) e. CC ) | 
						
							| 30 | 29 | adantll |  |-  ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. NN0 ) -> ( y ^ k ) e. CC ) | 
						
							| 31 | 28 30 | mulcld |  |-  ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( y ^ k ) ) e. CC ) | 
						
							| 32 | 19 31 | sylan2 |  |-  ( ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) /\ k e. ( 0 ... i ) ) -> ( ( A ` k ) x. ( y ^ k ) ) e. CC ) | 
						
							| 33 | 22 25 32 | fsumser |  |-  ( ( ( ph /\ i e. NN0 ) /\ y e. CC ) -> sum_ k e. ( 0 ... i ) ( ( A ` k ) x. ( y ^ k ) ) = ( seq 0 ( + , ( G ` y ) ) ` i ) ) | 
						
							| 34 | 33 | mpteq2dva |  |-  ( ( ph /\ i e. NN0 ) -> ( y e. CC |-> sum_ k e. ( 0 ... i ) ( ( A ` k ) x. ( y ^ k ) ) ) = ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) ) | 
						
							| 35 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 36 | 35 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 37 | 36 | a1i |  |-  ( ( ph /\ i e. NN0 ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 38 |  | fzfid |  |-  ( ( ph /\ i e. NN0 ) -> ( 0 ... i ) e. Fin ) | 
						
							| 39 | 36 | a1i |  |-  ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 40 |  | ffvelcdm |  |-  ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) | 
						
							| 41 | 26 19 40 | syl2an |  |-  ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( A ` k ) e. CC ) | 
						
							| 42 | 39 39 41 | cnmptc |  |-  ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( y e. CC |-> ( A ` k ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 43 | 19 | adantl |  |-  ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> k e. NN0 ) | 
						
							| 44 | 35 | expcn |  |-  ( k e. NN0 -> ( y e. CC |-> ( y ^ k ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 45 | 43 44 | syl |  |-  ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( y e. CC |-> ( y ^ k ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 46 | 35 | mpomulcn |  |-  ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 47 | 46 | a1i |  |-  ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 48 |  | oveq12 |  |-  ( ( u = ( A ` k ) /\ v = ( y ^ k ) ) -> ( u x. v ) = ( ( A ` k ) x. ( y ^ k ) ) ) | 
						
							| 49 | 39 42 45 39 39 47 48 | cnmpt12 |  |-  ( ( ( ph /\ i e. NN0 ) /\ k e. ( 0 ... i ) ) -> ( y e. CC |-> ( ( A ` k ) x. ( y ^ k ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 50 | 35 37 38 49 | fsumcn |  |-  ( ( ph /\ i e. NN0 ) -> ( y e. CC |-> sum_ k e. ( 0 ... i ) ( ( A ` k ) x. ( y ^ k ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 51 | 35 | cncfcn1 |  |-  ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 52 | 50 51 | eleqtrrdi |  |-  ( ( ph /\ i e. NN0 ) -> ( y e. CC |-> sum_ k e. ( 0 ... i ) ( ( A ` k ) x. ( y ^ k ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 53 | 34 52 | eqeltrrd |  |-  ( ( ph /\ i e. NN0 ) -> ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) e. ( CC -cn-> CC ) ) | 
						
							| 54 |  | rescncf |  |-  ( S C_ CC -> ( ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) e. ( CC -cn-> CC ) -> ( ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) |` S ) e. ( S -cn-> CC ) ) ) | 
						
							| 55 | 16 53 54 | sylc |  |-  ( ( ph /\ i e. NN0 ) -> ( ( y e. CC |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) |` S ) e. ( S -cn-> CC ) ) | 
						
							| 56 | 17 55 | eqeltrrd |  |-  ( ( ph /\ i e. NN0 ) -> ( y e. S |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) e. ( S -cn-> CC ) ) | 
						
							| 57 | 56 5 | fmptd |  |-  ( ph -> H : NN0 --> ( S -cn-> CC ) ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 | pserulm |  |-  ( ph -> H ( ~~>u ` S ) F ) | 
						
							| 59 | 9 10 57 58 | ulmcn |  |-  ( ph -> F e. ( S -cn-> CC ) ) |