Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
2 |
|
pserf.f |
|- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
3 |
|
pserf.a |
|- ( ph -> A : NN0 --> CC ) |
4 |
|
pserf.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
5 |
|
psercn.s |
|- S = ( `' abs " ( 0 [,) R ) ) |
6 |
|
psercn.m |
|- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
7 |
|
pserdv.b |
|- B = ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) |
8 |
|
dvfcn |
|- ( CC _D F ) : dom ( CC _D F ) --> CC |
9 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
10 |
1 2 3 4 5 6
|
psercn |
|- ( ph -> F e. ( S -cn-> CC ) ) |
11 |
|
cncff |
|- ( F e. ( S -cn-> CC ) -> F : S --> CC ) |
12 |
10 11
|
syl |
|- ( ph -> F : S --> CC ) |
13 |
|
cnvimass |
|- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
14 |
|
absf |
|- abs : CC --> RR |
15 |
14
|
fdmi |
|- dom abs = CC |
16 |
13 15
|
sseqtri |
|- ( `' abs " ( 0 [,) R ) ) C_ CC |
17 |
5 16
|
eqsstri |
|- S C_ CC |
18 |
17
|
a1i |
|- ( ph -> S C_ CC ) |
19 |
9 12 18
|
dvbss |
|- ( ph -> dom ( CC _D F ) C_ S ) |
20 |
|
ssidd |
|- ( ( ph /\ a e. S ) -> CC C_ CC ) |
21 |
12
|
adantr |
|- ( ( ph /\ a e. S ) -> F : S --> CC ) |
22 |
17
|
a1i |
|- ( ( ph /\ a e. S ) -> S C_ CC ) |
23 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
24 |
|
0cnd |
|- ( ( ph /\ a e. S ) -> 0 e. CC ) |
25 |
18
|
sselda |
|- ( ( ph /\ a e. S ) -> a e. CC ) |
26 |
25
|
abscld |
|- ( ( ph /\ a e. S ) -> ( abs ` a ) e. RR ) |
27 |
1 2 3 4 5 6
|
psercnlem1 |
|- ( ( ph /\ a e. S ) -> ( M e. RR+ /\ ( abs ` a ) < M /\ M < R ) ) |
28 |
27
|
simp1d |
|- ( ( ph /\ a e. S ) -> M e. RR+ ) |
29 |
28
|
rpred |
|- ( ( ph /\ a e. S ) -> M e. RR ) |
30 |
26 29
|
readdcld |
|- ( ( ph /\ a e. S ) -> ( ( abs ` a ) + M ) e. RR ) |
31 |
|
0red |
|- ( ( ph /\ a e. S ) -> 0 e. RR ) |
32 |
25
|
absge0d |
|- ( ( ph /\ a e. S ) -> 0 <_ ( abs ` a ) ) |
33 |
26 28
|
ltaddrpd |
|- ( ( ph /\ a e. S ) -> ( abs ` a ) < ( ( abs ` a ) + M ) ) |
34 |
31 26 30 32 33
|
lelttrd |
|- ( ( ph /\ a e. S ) -> 0 < ( ( abs ` a ) + M ) ) |
35 |
30 34
|
elrpd |
|- ( ( ph /\ a e. S ) -> ( ( abs ` a ) + M ) e. RR+ ) |
36 |
35
|
rphalfcld |
|- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) e. RR+ ) |
37 |
36
|
rpxrd |
|- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) e. RR* ) |
38 |
|
blssm |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( ( ( abs ` a ) + M ) / 2 ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) C_ CC ) |
39 |
23 24 37 38
|
mp3an2i |
|- ( ( ph /\ a e. S ) -> ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) C_ CC ) |
40 |
7 39
|
eqsstrid |
|- ( ( ph /\ a e. S ) -> B C_ CC ) |
41 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
42 |
41
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
43 |
42
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
44 |
41 43
|
dvres |
|- ( ( ( CC C_ CC /\ F : S --> CC ) /\ ( S C_ CC /\ B C_ CC ) ) -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) ) |
45 |
20 21 22 40 44
|
syl22anc |
|- ( ( ph /\ a e. S ) -> ( CC _D ( F |` B ) ) = ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) ) |
46 |
|
resss |
|- ( ( CC _D F ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` B ) ) C_ ( CC _D F ) |
47 |
45 46
|
eqsstrdi |
|- ( ( ph /\ a e. S ) -> ( CC _D ( F |` B ) ) C_ ( CC _D F ) ) |
48 |
|
dmss |
|- ( ( CC _D ( F |` B ) ) C_ ( CC _D F ) -> dom ( CC _D ( F |` B ) ) C_ dom ( CC _D F ) ) |
49 |
47 48
|
syl |
|- ( ( ph /\ a e. S ) -> dom ( CC _D ( F |` B ) ) C_ dom ( CC _D F ) ) |
50 |
1 2 3 4 5 6
|
pserdvlem1 |
|- ( ( ph /\ a e. S ) -> ( ( ( ( abs ` a ) + M ) / 2 ) e. RR+ /\ ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) /\ ( ( ( abs ` a ) + M ) / 2 ) < R ) ) |
51 |
1 2 3 4 5 50
|
psercnlem2 |
|- ( ( ph /\ a e. S ) -> ( a e. ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) /\ ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) C_ ( `' abs " ( 0 [,] ( ( ( abs ` a ) + M ) / 2 ) ) ) /\ ( `' abs " ( 0 [,] ( ( ( abs ` a ) + M ) / 2 ) ) ) C_ S ) ) |
52 |
51
|
simp1d |
|- ( ( ph /\ a e. S ) -> a e. ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) ) |
53 |
52 7
|
eleqtrrdi |
|- ( ( ph /\ a e. S ) -> a e. B ) |
54 |
1 2 3 4 5 6 7
|
pserdvlem2 |
|- ( ( ph /\ a e. S ) -> ( CC _D ( F |` B ) ) = ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ) |
55 |
54
|
dmeqd |
|- ( ( ph /\ a e. S ) -> dom ( CC _D ( F |` B ) ) = dom ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ) |
56 |
|
dmmptg |
|- ( A. y e. B sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) e. _V -> dom ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) = B ) |
57 |
|
sumex |
|- sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) e. _V |
58 |
57
|
a1i |
|- ( y e. B -> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) e. _V ) |
59 |
56 58
|
mprg |
|- dom ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) = B |
60 |
55 59
|
eqtrdi |
|- ( ( ph /\ a e. S ) -> dom ( CC _D ( F |` B ) ) = B ) |
61 |
53 60
|
eleqtrrd |
|- ( ( ph /\ a e. S ) -> a e. dom ( CC _D ( F |` B ) ) ) |
62 |
49 61
|
sseldd |
|- ( ( ph /\ a e. S ) -> a e. dom ( CC _D F ) ) |
63 |
19 62
|
eqelssd |
|- ( ph -> dom ( CC _D F ) = S ) |
64 |
63
|
feq2d |
|- ( ph -> ( ( CC _D F ) : dom ( CC _D F ) --> CC <-> ( CC _D F ) : S --> CC ) ) |
65 |
8 64
|
mpbii |
|- ( ph -> ( CC _D F ) : S --> CC ) |
66 |
65
|
feqmptd |
|- ( ph -> ( CC _D F ) = ( a e. S |-> ( ( CC _D F ) ` a ) ) ) |
67 |
|
ffun |
|- ( ( CC _D F ) : dom ( CC _D F ) --> CC -> Fun ( CC _D F ) ) |
68 |
8 67
|
mp1i |
|- ( ( ph /\ a e. S ) -> Fun ( CC _D F ) ) |
69 |
|
funssfv |
|- ( ( Fun ( CC _D F ) /\ ( CC _D ( F |` B ) ) C_ ( CC _D F ) /\ a e. dom ( CC _D ( F |` B ) ) ) -> ( ( CC _D F ) ` a ) = ( ( CC _D ( F |` B ) ) ` a ) ) |
70 |
68 47 61 69
|
syl3anc |
|- ( ( ph /\ a e. S ) -> ( ( CC _D F ) ` a ) = ( ( CC _D ( F |` B ) ) ` a ) ) |
71 |
54
|
fveq1d |
|- ( ( ph /\ a e. S ) -> ( ( CC _D ( F |` B ) ) ` a ) = ( ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ` a ) ) |
72 |
|
oveq1 |
|- ( y = a -> ( y ^ k ) = ( a ^ k ) ) |
73 |
72
|
oveq2d |
|- ( y = a -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) |
74 |
73
|
sumeq2sdv |
|- ( y = a -> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) = sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) |
75 |
|
eqid |
|- ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) = ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) |
76 |
|
sumex |
|- sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) e. _V |
77 |
74 75 76
|
fvmpt |
|- ( a e. B -> ( ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ` a ) = sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) |
78 |
53 77
|
syl |
|- ( ( ph /\ a e. S ) -> ( ( y e. B |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ` a ) = sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) |
79 |
70 71 78
|
3eqtrd |
|- ( ( ph /\ a e. S ) -> ( ( CC _D F ) ` a ) = sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) |
80 |
79
|
mpteq2dva |
|- ( ph -> ( a e. S |-> ( ( CC _D F ) ` a ) ) = ( a e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) ) |
81 |
66 80
|
eqtrd |
|- ( ph -> ( CC _D F ) = ( a e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) ) |
82 |
|
oveq1 |
|- ( a = y -> ( a ^ k ) = ( y ^ k ) ) |
83 |
82
|
oveq2d |
|- ( a = y -> ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) = ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) |
84 |
83
|
sumeq2sdv |
|- ( a = y -> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) = sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) |
85 |
84
|
cbvmptv |
|- ( a e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( a ^ k ) ) ) = ( y e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) |
86 |
81 85
|
eqtrdi |
|- ( ph -> ( CC _D F ) = ( y e. S |-> sum_ k e. NN0 ( ( ( k + 1 ) x. ( A ` ( k + 1 ) ) ) x. ( y ^ k ) ) ) ) |