Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
2 |
|
pserf.f |
|- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
3 |
|
pserf.a |
|- ( ph -> A : NN0 --> CC ) |
4 |
|
pserf.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
5 |
|
psercn.s |
|- S = ( `' abs " ( 0 [,) R ) ) |
6 |
|
psercn.m |
|- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
7 |
|
cnvimass |
|- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
8 |
|
absf |
|- abs : CC --> RR |
9 |
8
|
fdmi |
|- dom abs = CC |
10 |
7 9
|
sseqtri |
|- ( `' abs " ( 0 [,) R ) ) C_ CC |
11 |
5 10
|
eqsstri |
|- S C_ CC |
12 |
11
|
a1i |
|- ( ph -> S C_ CC ) |
13 |
12
|
sselda |
|- ( ( ph /\ a e. S ) -> a e. CC ) |
14 |
13
|
abscld |
|- ( ( ph /\ a e. S ) -> ( abs ` a ) e. RR ) |
15 |
1 2 3 4 5 6
|
psercnlem1 |
|- ( ( ph /\ a e. S ) -> ( M e. RR+ /\ ( abs ` a ) < M /\ M < R ) ) |
16 |
15
|
simp1d |
|- ( ( ph /\ a e. S ) -> M e. RR+ ) |
17 |
16
|
rpred |
|- ( ( ph /\ a e. S ) -> M e. RR ) |
18 |
14 17
|
readdcld |
|- ( ( ph /\ a e. S ) -> ( ( abs ` a ) + M ) e. RR ) |
19 |
|
0red |
|- ( ( ph /\ a e. S ) -> 0 e. RR ) |
20 |
13
|
absge0d |
|- ( ( ph /\ a e. S ) -> 0 <_ ( abs ` a ) ) |
21 |
14 16
|
ltaddrpd |
|- ( ( ph /\ a e. S ) -> ( abs ` a ) < ( ( abs ` a ) + M ) ) |
22 |
19 14 18 20 21
|
lelttrd |
|- ( ( ph /\ a e. S ) -> 0 < ( ( abs ` a ) + M ) ) |
23 |
18 22
|
elrpd |
|- ( ( ph /\ a e. S ) -> ( ( abs ` a ) + M ) e. RR+ ) |
24 |
23
|
rphalfcld |
|- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) e. RR+ ) |
25 |
15
|
simp2d |
|- ( ( ph /\ a e. S ) -> ( abs ` a ) < M ) |
26 |
|
avglt1 |
|- ( ( ( abs ` a ) e. RR /\ M e. RR ) -> ( ( abs ` a ) < M <-> ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) ) ) |
27 |
14 17 26
|
syl2anc |
|- ( ( ph /\ a e. S ) -> ( ( abs ` a ) < M <-> ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) ) ) |
28 |
25 27
|
mpbid |
|- ( ( ph /\ a e. S ) -> ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) ) |
29 |
18
|
rehalfcld |
|- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) e. RR ) |
30 |
29
|
rexrd |
|- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) e. RR* ) |
31 |
17
|
rexrd |
|- ( ( ph /\ a e. S ) -> M e. RR* ) |
32 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
33 |
1 3 4
|
radcnvcl |
|- ( ph -> R e. ( 0 [,] +oo ) ) |
34 |
32 33
|
sselid |
|- ( ph -> R e. RR* ) |
35 |
34
|
adantr |
|- ( ( ph /\ a e. S ) -> R e. RR* ) |
36 |
|
avglt2 |
|- ( ( ( abs ` a ) e. RR /\ M e. RR ) -> ( ( abs ` a ) < M <-> ( ( ( abs ` a ) + M ) / 2 ) < M ) ) |
37 |
14 17 36
|
syl2anc |
|- ( ( ph /\ a e. S ) -> ( ( abs ` a ) < M <-> ( ( ( abs ` a ) + M ) / 2 ) < M ) ) |
38 |
25 37
|
mpbid |
|- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) < M ) |
39 |
15
|
simp3d |
|- ( ( ph /\ a e. S ) -> M < R ) |
40 |
30 31 35 38 39
|
xrlttrd |
|- ( ( ph /\ a e. S ) -> ( ( ( abs ` a ) + M ) / 2 ) < R ) |
41 |
24 28 40
|
3jca |
|- ( ( ph /\ a e. S ) -> ( ( ( ( abs ` a ) + M ) / 2 ) e. RR+ /\ ( abs ` a ) < ( ( ( abs ` a ) + M ) / 2 ) /\ ( ( ( abs ` a ) + M ) / 2 ) < R ) ) |