Step |
Hyp |
Ref |
Expression |
1 |
|
pser.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
2 |
|
radcnv.a |
|- ( ph -> A : NN0 --> CC ) |
3 |
|
psergf.x |
|- ( ph -> X e. CC ) |
4 |
1
|
pserval |
|- ( X e. CC -> ( G ` X ) = ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) ) |
5 |
4
|
adantl |
|- ( ( A : NN0 --> CC /\ X e. CC ) -> ( G ` X ) = ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) ) |
6 |
|
ffvelrn |
|- ( ( A : NN0 --> CC /\ m e. NN0 ) -> ( A ` m ) e. CC ) |
7 |
6
|
adantlr |
|- ( ( ( A : NN0 --> CC /\ X e. CC ) /\ m e. NN0 ) -> ( A ` m ) e. CC ) |
8 |
|
expcl |
|- ( ( X e. CC /\ m e. NN0 ) -> ( X ^ m ) e. CC ) |
9 |
8
|
adantll |
|- ( ( ( A : NN0 --> CC /\ X e. CC ) /\ m e. NN0 ) -> ( X ^ m ) e. CC ) |
10 |
7 9
|
mulcld |
|- ( ( ( A : NN0 --> CC /\ X e. CC ) /\ m e. NN0 ) -> ( ( A ` m ) x. ( X ^ m ) ) e. CC ) |
11 |
5 10
|
fmpt3d |
|- ( ( A : NN0 --> CC /\ X e. CC ) -> ( G ` X ) : NN0 --> CC ) |
12 |
2 3 11
|
syl2anc |
|- ( ph -> ( G ` X ) : NN0 --> CC ) |