Step |
Hyp |
Ref |
Expression |
1 |
|
pser.g |
|- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
2 |
|
oveq1 |
|- ( y = X -> ( y ^ m ) = ( X ^ m ) ) |
3 |
2
|
oveq2d |
|- ( y = X -> ( ( A ` m ) x. ( y ^ m ) ) = ( ( A ` m ) x. ( X ^ m ) ) ) |
4 |
3
|
mpteq2dv |
|- ( y = X -> ( m e. NN0 |-> ( ( A ` m ) x. ( y ^ m ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) ) |
5 |
|
fveq2 |
|- ( n = m -> ( A ` n ) = ( A ` m ) ) |
6 |
|
oveq2 |
|- ( n = m -> ( x ^ n ) = ( x ^ m ) ) |
7 |
5 6
|
oveq12d |
|- ( n = m -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` m ) x. ( x ^ m ) ) ) |
8 |
7
|
cbvmptv |
|- ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) |
9 |
|
oveq1 |
|- ( x = y -> ( x ^ m ) = ( y ^ m ) ) |
10 |
9
|
oveq2d |
|- ( x = y -> ( ( A ` m ) x. ( x ^ m ) ) = ( ( A ` m ) x. ( y ^ m ) ) ) |
11 |
10
|
mpteq2dv |
|- ( x = y -> ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( y ^ m ) ) ) ) |
12 |
8 11
|
syl5eq |
|- ( x = y -> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( y ^ m ) ) ) ) |
13 |
12
|
cbvmptv |
|- ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) = ( y e. CC |-> ( m e. NN0 |-> ( ( A ` m ) x. ( y ^ m ) ) ) ) |
14 |
1 13
|
eqtri |
|- G = ( y e. CC |-> ( m e. NN0 |-> ( ( A ` m ) x. ( y ^ m ) ) ) ) |
15 |
|
nn0ex |
|- NN0 e. _V |
16 |
15
|
mptex |
|- ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) e. _V |
17 |
4 14 16
|
fvmpt |
|- ( X e. CC -> ( G ` X ) = ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) ) |