Metamath Proof Explorer


Theorem psgnco

Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses psgninv.s
|- S = ( SymGrp ` D )
psgninv.n
|- N = ( pmSgn ` D )
psgninv.p
|- P = ( Base ` S )
Assertion psgnco
|- ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F o. G ) ) = ( ( N ` F ) x. ( N ` G ) ) )

Proof

Step Hyp Ref Expression
1 psgninv.s
 |-  S = ( SymGrp ` D )
2 psgninv.n
 |-  N = ( pmSgn ` D )
3 psgninv.p
 |-  P = ( Base ` S )
4 eqid
 |-  ( +g ` S ) = ( +g ` S )
5 1 3 4 symgov
 |-  ( ( F e. P /\ G e. P ) -> ( F ( +g ` S ) G ) = ( F o. G ) )
6 5 3adant1
 |-  ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( F ( +g ` S ) G ) = ( F o. G ) )
7 6 fveq2d
 |-  ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( N ` ( F o. G ) ) )
8 eqid
 |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } )
9 1 2 8 psgnghm2
 |-  ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) )
10 prex
 |-  { 1 , -u 1 } e. _V
11 eqid
 |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld )
12 cnfldmul
 |-  x. = ( .r ` CCfld )
13 11 12 mgpplusg
 |-  x. = ( +g ` ( mulGrp ` CCfld ) )
14 8 13 ressplusg
 |-  ( { 1 , -u 1 } e. _V -> x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) )
15 10 14 ax-mp
 |-  x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) )
16 3 4 15 ghmlin
 |-  ( ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( ( N ` F ) x. ( N ` G ) ) )
17 9 16 syl3an1
 |-  ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( ( N ` F ) x. ( N ` G ) ) )
18 7 17 eqtr3d
 |-  ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F o. G ) ) = ( ( N ` F ) x. ( N ` G ) ) )