Step |
Hyp |
Ref |
Expression |
1 |
|
psgninv.s |
|- S = ( SymGrp ` D ) |
2 |
|
psgninv.n |
|- N = ( pmSgn ` D ) |
3 |
|
psgninv.p |
|- P = ( Base ` S ) |
4 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
5 |
1 3 4
|
symgov |
|- ( ( F e. P /\ G e. P ) -> ( F ( +g ` S ) G ) = ( F o. G ) ) |
6 |
5
|
3adant1 |
|- ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( F ( +g ` S ) G ) = ( F o. G ) ) |
7 |
6
|
fveq2d |
|- ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( N ` ( F o. G ) ) ) |
8 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
9 |
1 2 8
|
psgnghm2 |
|- ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
10 |
|
prex |
|- { 1 , -u 1 } e. _V |
11 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
12 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
13 |
11 12
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
14 |
8 13
|
ressplusg |
|- ( { 1 , -u 1 } e. _V -> x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
15 |
10 14
|
ax-mp |
|- x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
16 |
3 4 15
|
ghmlin |
|- ( ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( ( N ` F ) x. ( N ` G ) ) ) |
17 |
9 16
|
syl3an1 |
|- ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( ( N ` F ) x. ( N ` G ) ) ) |
18 |
7 17
|
eqtr3d |
|- ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F o. G ) ) = ( ( N ` F ) x. ( N ` G ) ) ) |