Step |
Hyp |
Ref |
Expression |
1 |
|
psgndif.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
psgndif.s |
|- S = ( pmSgn ` N ) |
3 |
|
psgndif.z |
|- Z = ( pmSgn ` ( N \ { K } ) ) |
4 |
|
eqid |
|- ran ( pmTrsp ` ( N \ { K } ) ) = ran ( pmTrsp ` ( N \ { K } ) ) |
5 |
|
eqid |
|- ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) |
6 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
7 |
|
eqid |
|- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
8 |
1 4 5 6 7
|
psgnfix2 |
|- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. r e. Word ran ( pmTrsp ` N ) Q = ( ( SymGrp ` N ) gsum r ) ) ) |
9 |
8
|
imp |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. r e. Word ran ( pmTrsp ` N ) Q = ( ( SymGrp ` N ) gsum r ) ) |
10 |
9
|
ad2antrr |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> E. r e. Word ran ( pmTrsp ` N ) Q = ( ( SymGrp ` N ) gsum r ) ) |
11 |
1 4 5 6 7
|
psgndiflemA |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( w e. Word ran ( pmTrsp ` ( N \ { K } ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) ) |
12 |
11
|
imp |
|- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( w e. Word ran ( pmTrsp ` ( N \ { K } ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ r e. Word ran ( pmTrsp ` N ) ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
13 |
12
|
3anassrs |
|- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
14 |
13
|
adantlrr |
|- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
15 |
|
eqeq1 |
|- ( s = ( -u 1 ^ ( # ` w ) ) -> ( s = ( -u 1 ^ ( # ` r ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
16 |
15
|
ad2antll |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> ( s = ( -u 1 ^ ( # ` r ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
17 |
16
|
adantr |
|- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( s = ( -u 1 ^ ( # ` r ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
18 |
14 17
|
sylibrd |
|- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> s = ( -u 1 ^ ( # ` r ) ) ) ) |
19 |
18
|
ralrimiva |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> A. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) -> s = ( -u 1 ^ ( # ` r ) ) ) ) |
20 |
10 19
|
r19.29imd |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) |
21 |
20
|
rexlimdva2 |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) -> E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) |
22 |
1 4 5
|
psgnfix1 |
|- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) ) |
23 |
22
|
imp |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) |
24 |
23
|
ad2antrr |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) |
25 |
|
simp-4l |
|- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) ) |
26 |
|
simpr |
|- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) |
27 |
26
|
adantr |
|- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) |
28 |
|
simpr |
|- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) |
29 |
|
simp-4r |
|- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> r e. Word ran ( pmTrsp ` N ) ) |
30 |
27 28 29
|
3jca |
|- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( w e. Word ran ( pmTrsp ` ( N \ { K } ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ r e. Word ran ( pmTrsp ` N ) ) ) |
31 |
|
simpr |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) -> Q = ( ( SymGrp ` N ) gsum r ) ) |
32 |
31
|
ad2antrr |
|- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> Q = ( ( SymGrp ` N ) gsum r ) ) |
33 |
25 30 32 11
|
syl3c |
|- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) |
34 |
33
|
eqcomd |
|- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) |
35 |
34
|
ex |
|- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
36 |
35
|
adantlrr |
|- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
37 |
|
eqeq1 |
|- ( s = ( -u 1 ^ ( # ` r ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
38 |
37
|
ad2antll |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
39 |
38
|
adantr |
|- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
40 |
36 39
|
sylibrd |
|- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> s = ( -u 1 ^ ( # ` w ) ) ) ) |
41 |
40
|
ralrimiva |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> A. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> s = ( -u 1 ^ ( # ` w ) ) ) ) |
42 |
24 41
|
r19.29imd |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
43 |
42
|
rexlimdva2 |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
44 |
21 43
|
impbid |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) |
45 |
44
|
iotabidv |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( iota s E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( iota s E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) |
46 |
|
diffi |
|- ( N e. Fin -> ( N \ { K } ) e. Fin ) |
47 |
46
|
ad2antrr |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( N \ { K } ) e. Fin ) |
48 |
|
eqid |
|- { q e. P | ( q ` K ) = K } = { q e. P | ( q ` K ) = K } |
49 |
|
eqid |
|- ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
50 |
|
eqid |
|- ( N \ { K } ) = ( N \ { K } ) |
51 |
1 48 49 50
|
symgfixelsi |
|- ( ( K e. N /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) |
52 |
51
|
adantll |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) |
53 |
5 49 4 3
|
psgnvalfi |
|- ( ( ( N \ { K } ) e. Fin /\ ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( iota s E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
54 |
47 52 53
|
syl2anc |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( iota s E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
55 |
|
simpl |
|- ( ( N e. Fin /\ K e. N ) -> N e. Fin ) |
56 |
|
elrabi |
|- ( Q e. { q e. P | ( q ` K ) = K } -> Q e. P ) |
57 |
6 1 7 2
|
psgnvalfi |
|- ( ( N e. Fin /\ Q e. P ) -> ( S ` Q ) = ( iota s E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) |
58 |
55 56 57
|
syl2an |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( S ` Q ) = ( iota s E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) |
59 |
45 54 58
|
3eqtr4d |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( S ` Q ) ) |
60 |
59
|
ex |
|- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( S ` Q ) ) ) |