Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfix.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
psgnfix.t |
|- T = ran ( pmTrsp ` ( N \ { K } ) ) |
3 |
|
psgnfix.s |
|- S = ( SymGrp ` ( N \ { K } ) ) |
4 |
|
psgnfix.z |
|- Z = ( SymGrp ` N ) |
5 |
|
psgnfix.r |
|- R = ran ( pmTrsp ` N ) |
6 |
|
fveq2 |
|- ( w = W -> ( # ` w ) = ( # ` W ) ) |
7 |
6
|
eqeq1d |
|- ( w = W -> ( ( # ` w ) = ( # ` r ) <-> ( # ` W ) = ( # ` r ) ) ) |
8 |
6
|
oveq2d |
|- ( w = W -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` W ) ) ) |
9 |
|
fveq1 |
|- ( w = W -> ( w ` i ) = ( W ` i ) ) |
10 |
9
|
fveq1d |
|- ( w = W -> ( ( w ` i ) ` n ) = ( ( W ` i ) ` n ) ) |
11 |
10
|
eqeq1d |
|- ( w = W -> ( ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) <-> ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) |
12 |
11
|
ralbidv |
|- ( w = W -> ( A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) <-> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) |
13 |
12
|
anbi2d |
|- ( w = W -> ( ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) <-> ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) |
14 |
8 13
|
raleqbidv |
|- ( w = W -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) |
15 |
7 14
|
anbi12d |
|- ( w = W -> ( ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) <-> ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
16 |
15
|
rexbidv |
|- ( w = W -> ( E. r e. Word R ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) <-> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
17 |
16
|
rspccv |
|- ( A. w e. Word T E. r e. Word R ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> ( W e. Word T -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
18 |
2 5
|
pmtrdifwrdel2 |
|- ( K e. N -> A. w e. Word T E. r e. Word R ( ( # ` w ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( w ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) |
19 |
17 18
|
syl11 |
|- ( W e. Word T -> ( K e. N -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
20 |
19
|
3ad2ant1 |
|- ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> ( K e. N -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
21 |
20
|
com12 |
|- ( K e. N -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
22 |
21
|
ad2antlr |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) ) |
23 |
22
|
imp |
|- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) |
24 |
|
oveq2 |
|- ( ( # ` W ) = ( # ` r ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` r ) ) ) |
25 |
24
|
adantr |
|- ( ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` r ) ) ) |
26 |
25
|
ad3antlr |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` r ) ) ) |
27 |
|
simplll |
|- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> N e. Fin ) |
28 |
27
|
ad2antlr |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> N e. Fin ) |
29 |
|
simplll |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> r e. Word R ) |
30 |
|
simprr3 |
|- ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> U e. Word R ) |
31 |
30
|
adantr |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> U e. Word R ) |
32 |
|
simplrl |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) ) |
33 |
|
3simpa |
|- ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) |
34 |
33
|
adantl |
|- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) |
35 |
34
|
ad2antlr |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) |
36 |
|
simplrl |
|- ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> ( # ` W ) = ( # ` r ) ) |
37 |
36
|
adantr |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( # ` W ) = ( # ` r ) ) |
38 |
|
simplrr |
|- ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) |
39 |
38
|
adantr |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) |
40 |
1 2 3 4 5
|
psgndiflemB |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) -> ( ( r e. Word R /\ ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> Q = ( Z gsum r ) ) ) ) |
41 |
40
|
imp31 |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( r e. Word R /\ ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) -> Q = ( Z gsum r ) ) |
42 |
41
|
eqcomd |
|- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( r e. Word R /\ ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) -> ( Z gsum r ) = Q ) |
43 |
32 35 29 37 39 42
|
syl23anc |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( Z gsum r ) = Q ) |
44 |
|
id |
|- ( Q = ( ( SymGrp ` N ) gsum U ) -> Q = ( ( SymGrp ` N ) gsum U ) ) |
45 |
4
|
eqcomi |
|- ( SymGrp ` N ) = Z |
46 |
45
|
oveq1i |
|- ( ( SymGrp ` N ) gsum U ) = ( Z gsum U ) |
47 |
44 46
|
eqtrdi |
|- ( Q = ( ( SymGrp ` N ) gsum U ) -> Q = ( Z gsum U ) ) |
48 |
47
|
adantl |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> Q = ( Z gsum U ) ) |
49 |
43 48
|
eqtrd |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( Z gsum r ) = ( Z gsum U ) ) |
50 |
4 5 28 29 31 49
|
psgnuni |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` U ) ) ) |
51 |
26 50
|
eqtrd |
|- ( ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) /\ Q = ( ( SymGrp ` N ) gsum U ) ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) |
52 |
51
|
ex |
|- ( ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) /\ ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) |
53 |
52
|
ex |
|- ( ( r e. Word R /\ ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) ) -> ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) ) |
54 |
53
|
rexlimiva |
|- ( E. r e. Word R ( ( # ` W ) = ( # ` r ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( r ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( r ` i ) ` n ) ) ) -> ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) ) |
55 |
23 54
|
mpcom |
|- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) |
56 |
55
|
ex |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) /\ U e. Word R ) -> ( Q = ( ( SymGrp ` N ) gsum U ) -> ( -u 1 ^ ( # ` W ) ) = ( -u 1 ^ ( # ` U ) ) ) ) ) |