Metamath Proof Explorer


Theorem psgneldm

Description: Property of being a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgneldm.g
|- G = ( SymGrp ` D )
psgneldm.n
|- N = ( pmSgn ` D )
psgneldm.b
|- B = ( Base ` G )
Assertion psgneldm
|- ( P e. dom N <-> ( P e. B /\ dom ( P \ _I ) e. Fin ) )

Proof

Step Hyp Ref Expression
1 psgneldm.g
 |-  G = ( SymGrp ` D )
2 psgneldm.n
 |-  N = ( pmSgn ` D )
3 psgneldm.b
 |-  B = ( Base ` G )
4 difeq1
 |-  ( p = P -> ( p \ _I ) = ( P \ _I ) )
5 4 dmeqd
 |-  ( p = P -> dom ( p \ _I ) = dom ( P \ _I ) )
6 5 eleq1d
 |-  ( p = P -> ( dom ( p \ _I ) e. Fin <-> dom ( P \ _I ) e. Fin ) )
7 eqid
 |-  { p e. B | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin }
8 1 3 7 2 psgnfn
 |-  N Fn { p e. B | dom ( p \ _I ) e. Fin }
9 8 fndmi
 |-  dom N = { p e. B | dom ( p \ _I ) e. Fin }
10 6 9 elrab2
 |-  ( P e. dom N <-> ( P e. B /\ dom ( P \ _I ) e. Fin ) )