Step |
Hyp |
Ref |
Expression |
1 |
|
psgnval.g |
|- G = ( SymGrp ` D ) |
2 |
|
psgnval.t |
|- T = ran ( pmTrsp ` D ) |
3 |
|
psgnval.n |
|- N = ( pmSgn ` D ) |
4 |
|
eqid |
|- ( G gsum W ) = ( G gsum W ) |
5 |
|
oveq2 |
|- ( w = W -> ( G gsum w ) = ( G gsum W ) ) |
6 |
5
|
rspceeqv |
|- ( ( W e. Word T /\ ( G gsum W ) = ( G gsum W ) ) -> E. w e. Word T ( G gsum W ) = ( G gsum w ) ) |
7 |
4 6
|
mpan2 |
|- ( W e. Word T -> E. w e. Word T ( G gsum W ) = ( G gsum w ) ) |
8 |
1 2 3
|
psgneldm2 |
|- ( D e. V -> ( ( G gsum W ) e. dom N <-> E. w e. Word T ( G gsum W ) = ( G gsum w ) ) ) |
9 |
8
|
biimpar |
|- ( ( D e. V /\ E. w e. Word T ( G gsum W ) = ( G gsum w ) ) -> ( G gsum W ) e. dom N ) |
10 |
7 9
|
sylan2 |
|- ( ( D e. V /\ W e. Word T ) -> ( G gsum W ) e. dom N ) |