Step |
Hyp |
Ref |
Expression |
1 |
|
psgnval.g |
|- G = ( SymGrp ` D ) |
2 |
|
psgnval.t |
|- T = ran ( pmTrsp ` D ) |
3 |
|
psgnval.n |
|- N = ( pmSgn ` D ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
1 3 4
|
psgneldm |
|- ( P e. dom N <-> ( P e. ( Base ` G ) /\ dom ( P \ _I ) e. Fin ) ) |
6 |
5
|
simplbi |
|- ( P e. dom N -> P e. ( Base ` G ) ) |
7 |
1 4
|
elbasfv |
|- ( P e. ( Base ` G ) -> D e. _V ) |
8 |
6 7
|
syl |
|- ( P e. dom N -> D e. _V ) |
9 |
1 2 3
|
psgneldm2 |
|- ( D e. _V -> ( P e. dom N <-> E. w e. Word T P = ( G gsum w ) ) ) |
10 |
8 9
|
syl |
|- ( P e. dom N -> ( P e. dom N <-> E. w e. Word T P = ( G gsum w ) ) ) |
11 |
10
|
ibi |
|- ( P e. dom N -> E. w e. Word T P = ( G gsum w ) ) |
12 |
|
simpr |
|- ( ( ( P e. dom N /\ w e. Word T ) /\ P = ( G gsum w ) ) -> P = ( G gsum w ) ) |
13 |
|
eqid |
|- ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) |
14 |
|
ovex |
|- ( -u 1 ^ ( # ` w ) ) e. _V |
15 |
|
eqeq1 |
|- ( s = ( -u 1 ^ ( # ` w ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
16 |
15
|
anbi2d |
|- ( s = ( -u 1 ^ ( # ` w ) ) -> ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
17 |
14 16
|
spcev |
|- ( ( P = ( G gsum w ) /\ ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` w ) ) ) -> E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
18 |
12 13 17
|
sylancl |
|- ( ( ( P e. dom N /\ w e. Word T ) /\ P = ( G gsum w ) ) -> E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
19 |
18
|
ex |
|- ( ( P e. dom N /\ w e. Word T ) -> ( P = ( G gsum w ) -> E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
20 |
19
|
reximdva |
|- ( P e. dom N -> ( E. w e. Word T P = ( G gsum w ) -> E. w e. Word T E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
21 |
11 20
|
mpd |
|- ( P e. dom N -> E. w e. Word T E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
22 |
|
rexcom4 |
|- ( E. w e. Word T E. s ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
23 |
21 22
|
sylib |
|- ( P e. dom N -> E. s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
24 |
|
reeanv |
|- ( E. w e. Word T E. x e. Word T ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) <-> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) |
25 |
8
|
ad2antrr |
|- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> D e. _V ) |
26 |
|
simplrl |
|- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> w e. Word T ) |
27 |
|
simplrr |
|- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> x e. Word T ) |
28 |
|
simprll |
|- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> P = ( G gsum w ) ) |
29 |
|
simprrl |
|- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> P = ( G gsum x ) ) |
30 |
28 29
|
eqtr3d |
|- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> ( G gsum w ) = ( G gsum x ) ) |
31 |
1 2 25 26 27 30
|
psgnuni |
|- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` x ) ) ) |
32 |
|
simprlr |
|- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> s = ( -u 1 ^ ( # ` w ) ) ) |
33 |
|
simprrr |
|- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> t = ( -u 1 ^ ( # ` x ) ) ) |
34 |
31 32 33
|
3eqtr4d |
|- ( ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) /\ ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) -> s = t ) |
35 |
34
|
ex |
|- ( ( P e. dom N /\ ( w e. Word T /\ x e. Word T ) ) -> ( ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) |
36 |
35
|
rexlimdvva |
|- ( P e. dom N -> ( E. w e. Word T E. x e. Word T ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) |
37 |
24 36
|
syl5bir |
|- ( P e. dom N -> ( ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) |
38 |
37
|
alrimivv |
|- ( P e. dom N -> A. s A. t ( ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) |
39 |
|
eqeq1 |
|- ( s = t -> ( s = ( -u 1 ^ ( # ` w ) ) <-> t = ( -u 1 ^ ( # ` w ) ) ) ) |
40 |
39
|
anbi2d |
|- ( s = t -> ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) ) ) |
41 |
40
|
rexbidv |
|- ( s = t -> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) ) ) |
42 |
|
oveq2 |
|- ( w = x -> ( G gsum w ) = ( G gsum x ) ) |
43 |
42
|
eqeq2d |
|- ( w = x -> ( P = ( G gsum w ) <-> P = ( G gsum x ) ) ) |
44 |
|
fveq2 |
|- ( w = x -> ( # ` w ) = ( # ` x ) ) |
45 |
44
|
oveq2d |
|- ( w = x -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` x ) ) ) |
46 |
45
|
eqeq2d |
|- ( w = x -> ( t = ( -u 1 ^ ( # ` w ) ) <-> t = ( -u 1 ^ ( # ` x ) ) ) ) |
47 |
43 46
|
anbi12d |
|- ( w = x -> ( ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) |
48 |
47
|
cbvrexvw |
|- ( E. w e. Word T ( P = ( G gsum w ) /\ t = ( -u 1 ^ ( # ` w ) ) ) <-> E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) |
49 |
41 48
|
bitrdi |
|- ( s = t -> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) ) |
50 |
49
|
eu4 |
|- ( E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( E. s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ A. s A. t ( ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) /\ E. x e. Word T ( P = ( G gsum x ) /\ t = ( -u 1 ^ ( # ` x ) ) ) ) -> s = t ) ) ) |
51 |
23 38 50
|
sylanbrc |
|- ( P e. dom N -> E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |