Metamath Proof Explorer


Theorem psgnevpm

Description: A permutation which is even has sign 1. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s
|- S = ( SymGrp ` D )
evpmss.p
|- P = ( Base ` S )
psgnevpmb.n
|- N = ( pmSgn ` D )
Assertion psgnevpm
|- ( ( D e. Fin /\ F e. ( pmEven ` D ) ) -> ( N ` F ) = 1 )

Proof

Step Hyp Ref Expression
1 evpmss.s
 |-  S = ( SymGrp ` D )
2 evpmss.p
 |-  P = ( Base ` S )
3 psgnevpmb.n
 |-  N = ( pmSgn ` D )
4 1 2 3 psgnevpmb
 |-  ( D e. Fin -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) )
5 4 simplbda
 |-  ( ( D e. Fin /\ F e. ( pmEven ` D ) ) -> ( N ` F ) = 1 )