Metamath Proof Explorer


Theorem psgnevpmb

Description: A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s
|- S = ( SymGrp ` D )
evpmss.p
|- P = ( Base ` S )
psgnevpmb.n
|- N = ( pmSgn ` D )
Assertion psgnevpmb
|- ( D e. Fin -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) )

Proof

Step Hyp Ref Expression
1 evpmss.s
 |-  S = ( SymGrp ` D )
2 evpmss.p
 |-  P = ( Base ` S )
3 psgnevpmb.n
 |-  N = ( pmSgn ` D )
4 elex
 |-  ( D e. Fin -> D e. _V )
5 fveq2
 |-  ( d = D -> ( pmSgn ` d ) = ( pmSgn ` D ) )
6 5 3 eqtr4di
 |-  ( d = D -> ( pmSgn ` d ) = N )
7 6 cnveqd
 |-  ( d = D -> `' ( pmSgn ` d ) = `' N )
8 7 imaeq1d
 |-  ( d = D -> ( `' ( pmSgn ` d ) " { 1 } ) = ( `' N " { 1 } ) )
9 df-evpm
 |-  pmEven = ( d e. _V |-> ( `' ( pmSgn ` d ) " { 1 } ) )
10 3 fvexi
 |-  N e. _V
11 10 cnvex
 |-  `' N e. _V
12 11 imaex
 |-  ( `' N " { 1 } ) e. _V
13 8 9 12 fvmpt
 |-  ( D e. _V -> ( pmEven ` D ) = ( `' N " { 1 } ) )
14 4 13 syl
 |-  ( D e. Fin -> ( pmEven ` D ) = ( `' N " { 1 } ) )
15 14 eleq2d
 |-  ( D e. Fin -> ( F e. ( pmEven ` D ) <-> F e. ( `' N " { 1 } ) ) )
16 eqid
 |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } )
17 1 3 16 psgnghm2
 |-  ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) )
18 eqid
 |-  ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) )
19 2 18 ghmf
 |-  ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> N : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) )
20 17 19 syl
 |-  ( D e. Fin -> N : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) )
21 ffn
 |-  ( N : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> N Fn P )
22 fniniseg
 |-  ( N Fn P -> ( F e. ( `' N " { 1 } ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) )
23 20 21 22 3syl
 |-  ( D e. Fin -> ( F e. ( `' N " { 1 } ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) )
24 15 23 bitrd
 |-  ( D e. Fin -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) )