Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfitr.g |
|- G = ( SymGrp ` N ) |
2 |
|
psgnfitr.p |
|- B = ( Base ` G ) |
3 |
|
psgnfitr.t |
|- T = ran ( pmTrsp ` N ) |
4 |
|
eqid |
|- ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) |
5 |
3 1 2 4
|
symggen2 |
|- ( N e. Fin -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = B ) |
6 |
1
|
symggrp |
|- ( N e. Fin -> G e. Grp ) |
7 |
6
|
grpmndd |
|- ( N e. Fin -> G e. Mnd ) |
8 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
9 |
3 1 8
|
symgtrf |
|- T C_ ( Base ` G ) |
10 |
8 4
|
gsumwspan |
|- ( ( G e. Mnd /\ T C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) ) |
11 |
7 9 10
|
sylancl |
|- ( N e. Fin -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) ) |
12 |
5 11
|
eqtr3d |
|- ( N e. Fin -> B = ran ( w e. Word T |-> ( G gsum w ) ) ) |
13 |
12
|
eleq2d |
|- ( N e. Fin -> ( Q e. B <-> Q e. ran ( w e. Word T |-> ( G gsum w ) ) ) ) |
14 |
|
eqid |
|- ( w e. Word T |-> ( G gsum w ) ) = ( w e. Word T |-> ( G gsum w ) ) |
15 |
|
ovex |
|- ( G gsum w ) e. _V |
16 |
14 15
|
elrnmpti |
|- ( Q e. ran ( w e. Word T |-> ( G gsum w ) ) <-> E. w e. Word T Q = ( G gsum w ) ) |
17 |
13 16
|
bitrdi |
|- ( N e. Fin -> ( Q e. B <-> E. w e. Word T Q = ( G gsum w ) ) ) |