| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnfitr.g |
|- G = ( SymGrp ` N ) |
| 2 |
|
psgnfitr.p |
|- B = ( Base ` G ) |
| 3 |
|
psgnfitr.t |
|- T = ran ( pmTrsp ` N ) |
| 4 |
|
eqid |
|- ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) |
| 5 |
3 1 2 4
|
symggen2 |
|- ( N e. Fin -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = B ) |
| 6 |
1
|
symggrp |
|- ( N e. Fin -> G e. Grp ) |
| 7 |
6
|
grpmndd |
|- ( N e. Fin -> G e. Mnd ) |
| 8 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 9 |
3 1 8
|
symgtrf |
|- T C_ ( Base ` G ) |
| 10 |
8 4
|
gsumwspan |
|- ( ( G e. Mnd /\ T C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) ) |
| 11 |
7 9 10
|
sylancl |
|- ( N e. Fin -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) ) |
| 12 |
5 11
|
eqtr3d |
|- ( N e. Fin -> B = ran ( w e. Word T |-> ( G gsum w ) ) ) |
| 13 |
12
|
eleq2d |
|- ( N e. Fin -> ( Q e. B <-> Q e. ran ( w e. Word T |-> ( G gsum w ) ) ) ) |
| 14 |
|
eqid |
|- ( w e. Word T |-> ( G gsum w ) ) = ( w e. Word T |-> ( G gsum w ) ) |
| 15 |
|
ovex |
|- ( G gsum w ) e. _V |
| 16 |
14 15
|
elrnmpti |
|- ( Q e. ran ( w e. Word T |-> ( G gsum w ) ) <-> E. w e. Word T Q = ( G gsum w ) ) |
| 17 |
13 16
|
bitrdi |
|- ( N e. Fin -> ( Q e. B <-> E. w e. Word T Q = ( G gsum w ) ) ) |