Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfix.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
psgnfix.t |
|- T = ran ( pmTrsp ` ( N \ { K } ) ) |
3 |
|
psgnfix.s |
|- S = ( SymGrp ` ( N \ { K } ) ) |
4 |
|
eqid |
|- { q e. P | ( q ` K ) = K } = { q e. P | ( q ` K ) = K } |
5 |
3
|
fveq2i |
|- ( Base ` S ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
6 |
|
eqid |
|- ( N \ { K } ) = ( N \ { K } ) |
7 |
1 4 5 6
|
symgfixelsi |
|- ( ( K e. N /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` S ) ) |
8 |
7
|
adantll |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` S ) ) |
9 |
|
diffi |
|- ( N e. Fin -> ( N \ { K } ) e. Fin ) |
10 |
9
|
ad2antrr |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( N \ { K } ) e. Fin ) |
11 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
12 |
3 11 2
|
psgnfitr |
|- ( ( N \ { K } ) e. Fin -> ( ( Q |` ( N \ { K } ) ) e. ( Base ` S ) <-> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) ) |
13 |
10 12
|
syl |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( Q |` ( N \ { K } ) ) e. ( Base ` S ) <-> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) ) |
14 |
8 13
|
mpbid |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) |
15 |
14
|
ex |
|- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word T ( Q |` ( N \ { K } ) ) = ( S gsum w ) ) ) |