| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							psgnfix.p | 
							 |-  P = ( Base ` ( SymGrp ` N ) )  | 
						
						
							| 2 | 
							
								
							 | 
							psgnfix.t | 
							 |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
						
							| 3 | 
							
								
							 | 
							psgnfix.s | 
							 |-  S = ( SymGrp ` ( N \ { K } ) ) | 
						
						
							| 4 | 
							
								
							 | 
							psgnfix.z | 
							 |-  Z = ( SymGrp ` N )  | 
						
						
							| 5 | 
							
								
							 | 
							psgnfix.r | 
							 |-  R = ran ( pmTrsp ` N )  | 
						
						
							| 6 | 
							
								
							 | 
							elrabi | 
							 |-  ( Q e. { q e. P | ( q ` K ) = K } -> Q e. P ) | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							 |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> Q e. P ) | 
						
						
							| 8 | 
							
								4
							 | 
							fveq2i | 
							 |-  ( Base ` Z ) = ( Base ` ( SymGrp ` N ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							eqtr4i | 
							 |-  P = ( Base ` Z )  | 
						
						
							| 10 | 
							
								4 9 5
							 | 
							psgnfitr | 
							 |-  ( N e. Fin -> ( Q e. P <-> E. w e. Word R Q = ( Z gsum w ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							bicomd | 
							 |-  ( N e. Fin -> ( E. w e. Word R Q = ( Z gsum w ) <-> Q e. P ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2antrr | 
							 |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word R Q = ( Z gsum w ) <-> Q e. P ) ) | 
						
						
							| 13 | 
							
								7 12
							 | 
							mpbird | 
							 |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word R Q = ( Z gsum w ) ) | 
						
						
							| 14 | 
							
								13
							 | 
							ex | 
							 |-  ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word R Q = ( Z gsum w ) ) ) |