Metamath Proof Explorer


Theorem psgnfix2

Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019)

Ref Expression
Hypotheses psgnfix.p
|- P = ( Base ` ( SymGrp ` N ) )
psgnfix.t
|- T = ran ( pmTrsp ` ( N \ { K } ) )
psgnfix.s
|- S = ( SymGrp ` ( N \ { K } ) )
psgnfix.z
|- Z = ( SymGrp ` N )
psgnfix.r
|- R = ran ( pmTrsp ` N )
Assertion psgnfix2
|- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word R Q = ( Z gsum w ) ) )

Proof

Step Hyp Ref Expression
1 psgnfix.p
 |-  P = ( Base ` ( SymGrp ` N ) )
2 psgnfix.t
 |-  T = ran ( pmTrsp ` ( N \ { K } ) )
3 psgnfix.s
 |-  S = ( SymGrp ` ( N \ { K } ) )
4 psgnfix.z
 |-  Z = ( SymGrp ` N )
5 psgnfix.r
 |-  R = ran ( pmTrsp ` N )
6 elrabi
 |-  ( Q e. { q e. P | ( q ` K ) = K } -> Q e. P )
7 6 adantl
 |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> Q e. P )
8 4 fveq2i
 |-  ( Base ` Z ) = ( Base ` ( SymGrp ` N ) )
9 1 8 eqtr4i
 |-  P = ( Base ` Z )
10 4 9 5 psgnfitr
 |-  ( N e. Fin -> ( Q e. P <-> E. w e. Word R Q = ( Z gsum w ) ) )
11 10 bicomd
 |-  ( N e. Fin -> ( E. w e. Word R Q = ( Z gsum w ) <-> Q e. P ) )
12 11 ad2antrr
 |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word R Q = ( Z gsum w ) <-> Q e. P ) )
13 7 12 mpbird
 |-  ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word R Q = ( Z gsum w ) )
14 13 ex
 |-  ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word R Q = ( Z gsum w ) ) )