Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfix.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
psgnfix.t |
|- T = ran ( pmTrsp ` ( N \ { K } ) ) |
3 |
|
psgnfix.s |
|- S = ( SymGrp ` ( N \ { K } ) ) |
4 |
|
psgnfix.z |
|- Z = ( SymGrp ` N ) |
5 |
|
psgnfix.r |
|- R = ran ( pmTrsp ` N ) |
6 |
|
elrabi |
|- ( Q e. { q e. P | ( q ` K ) = K } -> Q e. P ) |
7 |
6
|
adantl |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> Q e. P ) |
8 |
4
|
fveq2i |
|- ( Base ` Z ) = ( Base ` ( SymGrp ` N ) ) |
9 |
1 8
|
eqtr4i |
|- P = ( Base ` Z ) |
10 |
4 9 5
|
psgnfitr |
|- ( N e. Fin -> ( Q e. P <-> E. w e. Word R Q = ( Z gsum w ) ) ) |
11 |
10
|
bicomd |
|- ( N e. Fin -> ( E. w e. Word R Q = ( Z gsum w ) <-> Q e. P ) ) |
12 |
11
|
ad2antrr |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word R Q = ( Z gsum w ) <-> Q e. P ) ) |
13 |
7 12
|
mpbird |
|- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word R Q = ( Z gsum w ) ) |
14 |
13
|
ex |
|- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word R Q = ( Z gsum w ) ) ) |