Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfval.g |
|- G = ( SymGrp ` D ) |
2 |
|
psgnfval.b |
|- B = ( Base ` G ) |
3 |
|
psgnfval.f |
|- F = { p e. B | dom ( p \ _I ) e. Fin } |
4 |
|
psgnfval.t |
|- T = ran ( pmTrsp ` D ) |
5 |
|
psgnfval.n |
|- N = ( pmSgn ` D ) |
6 |
|
fveq2 |
|- ( d = D -> ( SymGrp ` d ) = ( SymGrp ` D ) ) |
7 |
6 1
|
eqtr4di |
|- ( d = D -> ( SymGrp ` d ) = G ) |
8 |
7
|
fveq2d |
|- ( d = D -> ( Base ` ( SymGrp ` d ) ) = ( Base ` G ) ) |
9 |
8 2
|
eqtr4di |
|- ( d = D -> ( Base ` ( SymGrp ` d ) ) = B ) |
10 |
|
rabeq |
|- ( ( Base ` ( SymGrp ` d ) ) = B -> { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin } ) |
11 |
9 10
|
syl |
|- ( d = D -> { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin } ) |
12 |
11 3
|
eqtr4di |
|- ( d = D -> { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } = F ) |
13 |
|
fveq2 |
|- ( d = D -> ( pmTrsp ` d ) = ( pmTrsp ` D ) ) |
14 |
13
|
rneqd |
|- ( d = D -> ran ( pmTrsp ` d ) = ran ( pmTrsp ` D ) ) |
15 |
14 4
|
eqtr4di |
|- ( d = D -> ran ( pmTrsp ` d ) = T ) |
16 |
|
wrdeq |
|- ( ran ( pmTrsp ` d ) = T -> Word ran ( pmTrsp ` d ) = Word T ) |
17 |
15 16
|
syl |
|- ( d = D -> Word ran ( pmTrsp ` d ) = Word T ) |
18 |
7
|
oveq1d |
|- ( d = D -> ( ( SymGrp ` d ) gsum w ) = ( G gsum w ) ) |
19 |
18
|
eqeq2d |
|- ( d = D -> ( x = ( ( SymGrp ` d ) gsum w ) <-> x = ( G gsum w ) ) ) |
20 |
19
|
anbi1d |
|- ( d = D -> ( ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
21 |
17 20
|
rexeqbidv |
|- ( d = D -> ( E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
22 |
21
|
iotabidv |
|- ( d = D -> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
23 |
12 22
|
mpteq12dv |
|- ( d = D -> ( x e. { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
24 |
|
df-psgn |
|- pmSgn = ( d e. _V |-> ( x e. { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
25 |
2
|
fvexi |
|- B e. _V |
26 |
3 25
|
rabex2 |
|- F e. _V |
27 |
26
|
mptex |
|- ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) e. _V |
28 |
23 24 27
|
fvmpt |
|- ( D e. _V -> ( pmSgn ` D ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
29 |
|
fvprc |
|- ( -. D e. _V -> ( pmSgn ` D ) = (/) ) |
30 |
|
fvprc |
|- ( -. D e. _V -> ( SymGrp ` D ) = (/) ) |
31 |
1 30
|
eqtrid |
|- ( -. D e. _V -> G = (/) ) |
32 |
31
|
fveq2d |
|- ( -. D e. _V -> ( Base ` G ) = ( Base ` (/) ) ) |
33 |
|
base0 |
|- (/) = ( Base ` (/) ) |
34 |
32 33
|
eqtr4di |
|- ( -. D e. _V -> ( Base ` G ) = (/) ) |
35 |
2 34
|
eqtrid |
|- ( -. D e. _V -> B = (/) ) |
36 |
|
rabeq |
|- ( B = (/) -> { p e. B | dom ( p \ _I ) e. Fin } = { p e. (/) | dom ( p \ _I ) e. Fin } ) |
37 |
35 36
|
syl |
|- ( -. D e. _V -> { p e. B | dom ( p \ _I ) e. Fin } = { p e. (/) | dom ( p \ _I ) e. Fin } ) |
38 |
|
rab0 |
|- { p e. (/) | dom ( p \ _I ) e. Fin } = (/) |
39 |
37 38
|
eqtrdi |
|- ( -. D e. _V -> { p e. B | dom ( p \ _I ) e. Fin } = (/) ) |
40 |
3 39
|
eqtrid |
|- ( -. D e. _V -> F = (/) ) |
41 |
40
|
mpteq1d |
|- ( -. D e. _V -> ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = ( x e. (/) |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
42 |
|
mpt0 |
|- ( x e. (/) |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = (/) |
43 |
41 42
|
eqtrdi |
|- ( -. D e. _V -> ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = (/) ) |
44 |
29 43
|
eqtr4d |
|- ( -. D e. _V -> ( pmSgn ` D ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
45 |
28 44
|
pm2.61i |
|- ( pmSgn ` D ) = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
46 |
5 45
|
eqtri |
|- N = ( x e. F |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |