Metamath Proof Explorer


Theorem psgnfvalfi

Description: Function definition of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfvalfi.g
|- G = ( SymGrp ` D )
psgnfvalfi.b
|- B = ( Base ` G )
psgnfvalfi.t
|- T = ran ( pmTrsp ` D )
psgnfvalfi.n
|- N = ( pmSgn ` D )
Assertion psgnfvalfi
|- ( D e. Fin -> N = ( x e. B |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 psgnfvalfi.g
 |-  G = ( SymGrp ` D )
2 psgnfvalfi.b
 |-  B = ( Base ` G )
3 psgnfvalfi.t
 |-  T = ran ( pmTrsp ` D )
4 psgnfvalfi.n
 |-  N = ( pmSgn ` D )
5 eqid
 |-  { p e. B | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin }
6 1 2 5 3 4 psgnfval
 |-  N = ( x e. { p e. B | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) )
7 1 2 sygbasnfpfi
 |-  ( ( D e. Fin /\ p e. B ) -> dom ( p \ _I ) e. Fin )
8 7 ralrimiva
 |-  ( D e. Fin -> A. p e. B dom ( p \ _I ) e. Fin )
9 rabid2
 |-  ( B = { p e. B | dom ( p \ _I ) e. Fin } <-> A. p e. B dom ( p \ _I ) e. Fin )
10 8 9 sylibr
 |-  ( D e. Fin -> B = { p e. B | dom ( p \ _I ) e. Fin } )
11 10 eqcomd
 |-  ( D e. Fin -> { p e. B | dom ( p \ _I ) e. Fin } = B )
12 11 mpteq1d
 |-  ( D e. Fin -> ( x e. { p e. B | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) = ( x e. B |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) )
13 6 12 syl5eq
 |-  ( D e. Fin -> N = ( x e. B |-> ( iota s E. w e. Word T ( x = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) )