| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnghm.s |
|- S = ( SymGrp ` D ) |
| 2 |
|
psgnghm.n |
|- N = ( pmSgn ` D ) |
| 3 |
|
psgnghm.f |
|- F = ( S |`s dom N ) |
| 4 |
|
psgnghm.u |
|- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 5 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 6 |
|
eqid |
|- { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
| 7 |
1 5 6 2
|
psgnfn |
|- N Fn { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
| 8 |
7
|
fndmi |
|- dom N = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
| 9 |
8
|
ssrab3 |
|- dom N C_ ( Base ` S ) |
| 10 |
3 5
|
ressbas2 |
|- ( dom N C_ ( Base ` S ) -> dom N = ( Base ` F ) ) |
| 11 |
9 10
|
ax-mp |
|- dom N = ( Base ` F ) |
| 12 |
4
|
cnmsgnbas |
|- { 1 , -u 1 } = ( Base ` U ) |
| 13 |
11
|
fvexi |
|- dom N e. _V |
| 14 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 15 |
3 14
|
ressplusg |
|- ( dom N e. _V -> ( +g ` S ) = ( +g ` F ) ) |
| 16 |
13 15
|
ax-mp |
|- ( +g ` S ) = ( +g ` F ) |
| 17 |
|
prex |
|- { 1 , -u 1 } e. _V |
| 18 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 19 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 20 |
18 19
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 21 |
4 20
|
ressplusg |
|- ( { 1 , -u 1 } e. _V -> x. = ( +g ` U ) ) |
| 22 |
17 21
|
ax-mp |
|- x. = ( +g ` U ) |
| 23 |
1 2
|
psgndmsubg |
|- ( D e. V -> dom N e. ( SubGrp ` S ) ) |
| 24 |
3
|
subggrp |
|- ( dom N e. ( SubGrp ` S ) -> F e. Grp ) |
| 25 |
23 24
|
syl |
|- ( D e. V -> F e. Grp ) |
| 26 |
4
|
cnmsgngrp |
|- U e. Grp |
| 27 |
26
|
a1i |
|- ( D e. V -> U e. Grp ) |
| 28 |
|
fnfun |
|- ( N Fn { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } -> Fun N ) |
| 29 |
7 28
|
ax-mp |
|- Fun N |
| 30 |
|
funfn |
|- ( Fun N <-> N Fn dom N ) |
| 31 |
29 30
|
mpbi |
|- N Fn dom N |
| 32 |
31
|
a1i |
|- ( D e. V -> N Fn dom N ) |
| 33 |
|
eqid |
|- ran ( pmTrsp ` D ) = ran ( pmTrsp ` D ) |
| 34 |
1 33 2
|
psgnvali |
|- ( x e. dom N -> E. z e. Word ran ( pmTrsp ` D ) ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) ) |
| 35 |
|
lencl |
|- ( z e. Word ran ( pmTrsp ` D ) -> ( # ` z ) e. NN0 ) |
| 36 |
35
|
nn0zd |
|- ( z e. Word ran ( pmTrsp ` D ) -> ( # ` z ) e. ZZ ) |
| 37 |
|
m1expcl2 |
|- ( ( # ` z ) e. ZZ -> ( -u 1 ^ ( # ` z ) ) e. { -u 1 , 1 } ) |
| 38 |
|
prcom |
|- { -u 1 , 1 } = { 1 , -u 1 } |
| 39 |
37 38
|
eleqtrdi |
|- ( ( # ` z ) e. ZZ -> ( -u 1 ^ ( # ` z ) ) e. { 1 , -u 1 } ) |
| 40 |
|
eleq1a |
|- ( ( -u 1 ^ ( # ` z ) ) e. { 1 , -u 1 } -> ( ( N ` x ) = ( -u 1 ^ ( # ` z ) ) -> ( N ` x ) e. { 1 , -u 1 } ) ) |
| 41 |
36 39 40
|
3syl |
|- ( z e. Word ran ( pmTrsp ` D ) -> ( ( N ` x ) = ( -u 1 ^ ( # ` z ) ) -> ( N ` x ) e. { 1 , -u 1 } ) ) |
| 42 |
41
|
adantld |
|- ( z e. Word ran ( pmTrsp ` D ) -> ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) -> ( N ` x ) e. { 1 , -u 1 } ) ) |
| 43 |
42
|
rexlimiv |
|- ( E. z e. Word ran ( pmTrsp ` D ) ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) -> ( N ` x ) e. { 1 , -u 1 } ) |
| 44 |
43
|
a1i |
|- ( D e. V -> ( E. z e. Word ran ( pmTrsp ` D ) ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) -> ( N ` x ) e. { 1 , -u 1 } ) ) |
| 45 |
34 44
|
syl5 |
|- ( D e. V -> ( x e. dom N -> ( N ` x ) e. { 1 , -u 1 } ) ) |
| 46 |
45
|
ralrimiv |
|- ( D e. V -> A. x e. dom N ( N ` x ) e. { 1 , -u 1 } ) |
| 47 |
|
ffnfv |
|- ( N : dom N --> { 1 , -u 1 } <-> ( N Fn dom N /\ A. x e. dom N ( N ` x ) e. { 1 , -u 1 } ) ) |
| 48 |
32 46 47
|
sylanbrc |
|- ( D e. V -> N : dom N --> { 1 , -u 1 } ) |
| 49 |
|
ccatcl |
|- ( ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) -> ( z ++ w ) e. Word ran ( pmTrsp ` D ) ) |
| 50 |
1 33 2
|
psgnvalii |
|- ( ( D e. V /\ ( z ++ w ) e. Word ran ( pmTrsp ` D ) ) -> ( N ` ( S gsum ( z ++ w ) ) ) = ( -u 1 ^ ( # ` ( z ++ w ) ) ) ) |
| 51 |
49 50
|
sylan2 |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( N ` ( S gsum ( z ++ w ) ) ) = ( -u 1 ^ ( # ` ( z ++ w ) ) ) ) |
| 52 |
1
|
symggrp |
|- ( D e. V -> S e. Grp ) |
| 53 |
52
|
grpmndd |
|- ( D e. V -> S e. Mnd ) |
| 54 |
33 1 5
|
symgtrf |
|- ran ( pmTrsp ` D ) C_ ( Base ` S ) |
| 55 |
|
sswrd |
|- ( ran ( pmTrsp ` D ) C_ ( Base ` S ) -> Word ran ( pmTrsp ` D ) C_ Word ( Base ` S ) ) |
| 56 |
54 55
|
ax-mp |
|- Word ran ( pmTrsp ` D ) C_ Word ( Base ` S ) |
| 57 |
56
|
sseli |
|- ( z e. Word ran ( pmTrsp ` D ) -> z e. Word ( Base ` S ) ) |
| 58 |
56
|
sseli |
|- ( w e. Word ran ( pmTrsp ` D ) -> w e. Word ( Base ` S ) ) |
| 59 |
5 14
|
gsumccat |
|- ( ( S e. Mnd /\ z e. Word ( Base ` S ) /\ w e. Word ( Base ` S ) ) -> ( S gsum ( z ++ w ) ) = ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) |
| 60 |
53 57 58 59
|
syl3an |
|- ( ( D e. V /\ z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) -> ( S gsum ( z ++ w ) ) = ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) |
| 61 |
60
|
3expb |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( S gsum ( z ++ w ) ) = ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) |
| 62 |
61
|
fveq2d |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( N ` ( S gsum ( z ++ w ) ) ) = ( N ` ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) ) |
| 63 |
|
ccatlen |
|- ( ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) -> ( # ` ( z ++ w ) ) = ( ( # ` z ) + ( # ` w ) ) ) |
| 64 |
63
|
adantl |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( # ` ( z ++ w ) ) = ( ( # ` z ) + ( # ` w ) ) ) |
| 65 |
64
|
oveq2d |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( -u 1 ^ ( # ` ( z ++ w ) ) ) = ( -u 1 ^ ( ( # ` z ) + ( # ` w ) ) ) ) |
| 66 |
|
neg1cn |
|- -u 1 e. CC |
| 67 |
66
|
a1i |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> -u 1 e. CC ) |
| 68 |
|
lencl |
|- ( w e. Word ran ( pmTrsp ` D ) -> ( # ` w ) e. NN0 ) |
| 69 |
68
|
ad2antll |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( # ` w ) e. NN0 ) |
| 70 |
35
|
ad2antrl |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( # ` z ) e. NN0 ) |
| 71 |
67 69 70
|
expaddd |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( -u 1 ^ ( ( # ` z ) + ( # ` w ) ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) |
| 72 |
65 71
|
eqtrd |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( -u 1 ^ ( # ` ( z ++ w ) ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) |
| 73 |
51 62 72
|
3eqtr3d |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( N ` ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) |
| 74 |
|
oveq12 |
|- ( ( x = ( S gsum z ) /\ y = ( S gsum w ) ) -> ( x ( +g ` S ) y ) = ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) |
| 75 |
74
|
fveq2d |
|- ( ( x = ( S gsum z ) /\ y = ( S gsum w ) ) -> ( N ` ( x ( +g ` S ) y ) ) = ( N ` ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) ) |
| 76 |
|
oveq12 |
|- ( ( ( N ` x ) = ( -u 1 ^ ( # ` z ) ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) -> ( ( N ` x ) x. ( N ` y ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) |
| 77 |
75 76
|
eqeqan12d |
|- ( ( ( x = ( S gsum z ) /\ y = ( S gsum w ) ) /\ ( ( N ` x ) = ( -u 1 ^ ( # ` z ) ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) -> ( ( N ` ( x ( +g ` S ) y ) ) = ( ( N ` x ) x. ( N ` y ) ) <-> ( N ` ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 78 |
77
|
an4s |
|- ( ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) -> ( ( N ` ( x ( +g ` S ) y ) ) = ( ( N ` x ) x. ( N ` y ) ) <-> ( N ` ( ( S gsum z ) ( +g ` S ) ( S gsum w ) ) ) = ( ( -u 1 ^ ( # ` z ) ) x. ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 79 |
73 78
|
syl5ibrcom |
|- ( ( D e. V /\ ( z e. Word ran ( pmTrsp ` D ) /\ w e. Word ran ( pmTrsp ` D ) ) ) -> ( ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) -> ( N ` ( x ( +g ` S ) y ) ) = ( ( N ` x ) x. ( N ` y ) ) ) ) |
| 80 |
79
|
rexlimdvva |
|- ( D e. V -> ( E. z e. Word ran ( pmTrsp ` D ) E. w e. Word ran ( pmTrsp ` D ) ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) -> ( N ` ( x ( +g ` S ) y ) ) = ( ( N ` x ) x. ( N ` y ) ) ) ) |
| 81 |
1 33 2
|
psgnvali |
|- ( y e. dom N -> E. w e. Word ran ( pmTrsp ` D ) ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| 82 |
34 81
|
anim12i |
|- ( ( x e. dom N /\ y e. dom N ) -> ( E. z e. Word ran ( pmTrsp ` D ) ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ E. w e. Word ran ( pmTrsp ` D ) ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 83 |
|
reeanv |
|- ( E. z e. Word ran ( pmTrsp ` D ) E. w e. Word ran ( pmTrsp ` D ) ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) <-> ( E. z e. Word ran ( pmTrsp ` D ) ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ E. w e. Word ran ( pmTrsp ` D ) ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 84 |
82 83
|
sylibr |
|- ( ( x e. dom N /\ y e. dom N ) -> E. z e. Word ran ( pmTrsp ` D ) E. w e. Word ran ( pmTrsp ` D ) ( ( x = ( S gsum z ) /\ ( N ` x ) = ( -u 1 ^ ( # ` z ) ) ) /\ ( y = ( S gsum w ) /\ ( N ` y ) = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 85 |
80 84
|
impel |
|- ( ( D e. V /\ ( x e. dom N /\ y e. dom N ) ) -> ( N ` ( x ( +g ` S ) y ) ) = ( ( N ` x ) x. ( N ` y ) ) ) |
| 86 |
11 12 16 22 25 27 48 85
|
isghmd |
|- ( D e. V -> N e. ( F GrpHom U ) ) |