| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnghm2.s |
|- S = ( SymGrp ` D ) |
| 2 |
|
psgnghm2.n |
|- N = ( pmSgn ` D ) |
| 3 |
|
psgnghm2.u |
|- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 4 |
|
eqid |
|- ( S |`s dom N ) = ( S |`s dom N ) |
| 5 |
1 2 4 3
|
psgnghm |
|- ( D e. Fin -> N e. ( ( S |`s dom N ) GrpHom U ) ) |
| 6 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 7 |
1 6
|
sygbasnfpfi |
|- ( ( D e. Fin /\ x e. ( Base ` S ) ) -> dom ( x \ _I ) e. Fin ) |
| 8 |
7
|
ralrimiva |
|- ( D e. Fin -> A. x e. ( Base ` S ) dom ( x \ _I ) e. Fin ) |
| 9 |
|
rabid2 |
|- ( ( Base ` S ) = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } <-> A. x e. ( Base ` S ) dom ( x \ _I ) e. Fin ) |
| 10 |
8 9
|
sylibr |
|- ( D e. Fin -> ( Base ` S ) = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } ) |
| 11 |
|
eqid |
|- { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
| 12 |
1 6 11 2
|
psgnfn |
|- N Fn { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
| 13 |
12
|
fndmi |
|- dom N = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
| 14 |
10 13
|
eqtr4di |
|- ( D e. Fin -> ( Base ` S ) = dom N ) |
| 15 |
|
eqimss |
|- ( ( Base ` S ) = dom N -> ( Base ` S ) C_ dom N ) |
| 16 |
1
|
fvexi |
|- S e. _V |
| 17 |
2
|
fvexi |
|- N e. _V |
| 18 |
17
|
dmex |
|- dom N e. _V |
| 19 |
4 6
|
ressid2 |
|- ( ( ( Base ` S ) C_ dom N /\ S e. _V /\ dom N e. _V ) -> ( S |`s dom N ) = S ) |
| 20 |
16 18 19
|
mp3an23 |
|- ( ( Base ` S ) C_ dom N -> ( S |`s dom N ) = S ) |
| 21 |
14 15 20
|
3syl |
|- ( D e. Fin -> ( S |`s dom N ) = S ) |
| 22 |
21
|
oveq1d |
|- ( D e. Fin -> ( ( S |`s dom N ) GrpHom U ) = ( S GrpHom U ) ) |
| 23 |
5 22
|
eleqtrd |
|- ( D e. Fin -> N e. ( S GrpHom U ) ) |