Step |
Hyp |
Ref |
Expression |
1 |
|
psgnghm2.s |
|- S = ( SymGrp ` D ) |
2 |
|
psgnghm2.n |
|- N = ( pmSgn ` D ) |
3 |
|
psgnghm2.u |
|- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
4 |
|
eqid |
|- ( S |`s dom N ) = ( S |`s dom N ) |
5 |
1 2 4 3
|
psgnghm |
|- ( D e. Fin -> N e. ( ( S |`s dom N ) GrpHom U ) ) |
6 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
7 |
1 6
|
sygbasnfpfi |
|- ( ( D e. Fin /\ x e. ( Base ` S ) ) -> dom ( x \ _I ) e. Fin ) |
8 |
7
|
ralrimiva |
|- ( D e. Fin -> A. x e. ( Base ` S ) dom ( x \ _I ) e. Fin ) |
9 |
|
rabid2 |
|- ( ( Base ` S ) = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } <-> A. x e. ( Base ` S ) dom ( x \ _I ) e. Fin ) |
10 |
8 9
|
sylibr |
|- ( D e. Fin -> ( Base ` S ) = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } ) |
11 |
|
eqid |
|- { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
12 |
1 6 11 2
|
psgnfn |
|- N Fn { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
13 |
12
|
fndmi |
|- dom N = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } |
14 |
10 13
|
eqtr4di |
|- ( D e. Fin -> ( Base ` S ) = dom N ) |
15 |
|
eqimss |
|- ( ( Base ` S ) = dom N -> ( Base ` S ) C_ dom N ) |
16 |
1
|
fvexi |
|- S e. _V |
17 |
2
|
fvexi |
|- N e. _V |
18 |
17
|
dmex |
|- dom N e. _V |
19 |
4 6
|
ressid2 |
|- ( ( ( Base ` S ) C_ dom N /\ S e. _V /\ dom N e. _V ) -> ( S |`s dom N ) = S ) |
20 |
16 18 19
|
mp3an23 |
|- ( ( Base ` S ) C_ dom N -> ( S |`s dom N ) = S ) |
21 |
14 15 20
|
3syl |
|- ( D e. Fin -> ( S |`s dom N ) = S ) |
22 |
21
|
oveq1d |
|- ( D e. Fin -> ( ( S |`s dom N ) GrpHom U ) = ( S GrpHom U ) ) |
23 |
5 22
|
eleqtrd |
|- ( D e. Fin -> N e. ( S GrpHom U ) ) |