Step |
Hyp |
Ref |
Expression |
1 |
|
psgninv.s |
|- S = ( SymGrp ` D ) |
2 |
|
psgninv.n |
|- N = ( pmSgn ` D ) |
3 |
|
psgninv.p |
|- P = ( Base ` S ) |
4 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
5 |
1 2 4
|
psgnghm2 |
|- ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
6 |
|
eqid |
|- ( invg ` S ) = ( invg ` S ) |
7 |
|
eqid |
|- ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
8 |
3 6 7
|
ghminv |
|- ( ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P ) -> ( N ` ( ( invg ` S ) ` F ) ) = ( ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ` ( N ` F ) ) ) |
9 |
5 8
|
sylan |
|- ( ( D e. Fin /\ F e. P ) -> ( N ` ( ( invg ` S ) ` F ) ) = ( ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ` ( N ` F ) ) ) |
10 |
1 3 6
|
symginv |
|- ( F e. P -> ( ( invg ` S ) ` F ) = `' F ) |
11 |
10
|
adantl |
|- ( ( D e. Fin /\ F e. P ) -> ( ( invg ` S ) ` F ) = `' F ) |
12 |
11
|
fveq2d |
|- ( ( D e. Fin /\ F e. P ) -> ( N ` ( ( invg ` S ) ` F ) ) = ( N ` `' F ) ) |
13 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
14 |
13
|
cnmsgnsubg |
|- { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
15 |
4
|
cnmsgnbas |
|- { 1 , -u 1 } = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
16 |
3 15
|
ghmf |
|- ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> N : P --> { 1 , -u 1 } ) |
17 |
5 16
|
syl |
|- ( D e. Fin -> N : P --> { 1 , -u 1 } ) |
18 |
17
|
ffvelrnda |
|- ( ( D e. Fin /\ F e. P ) -> ( N ` F ) e. { 1 , -u 1 } ) |
19 |
|
cnex |
|- CC e. _V |
20 |
19
|
difexi |
|- ( CC \ { 0 } ) e. _V |
21 |
|
ax-1cn |
|- 1 e. CC |
22 |
|
ax-1ne0 |
|- 1 =/= 0 |
23 |
|
eldifsn |
|- ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ 1 =/= 0 ) ) |
24 |
21 22 23
|
mpbir2an |
|- 1 e. ( CC \ { 0 } ) |
25 |
|
neg1cn |
|- -u 1 e. CC |
26 |
|
neg1ne0 |
|- -u 1 =/= 0 |
27 |
|
eldifsn |
|- ( -u 1 e. ( CC \ { 0 } ) <-> ( -u 1 e. CC /\ -u 1 =/= 0 ) ) |
28 |
25 26 27
|
mpbir2an |
|- -u 1 e. ( CC \ { 0 } ) |
29 |
|
prssi |
|- ( ( 1 e. ( CC \ { 0 } ) /\ -u 1 e. ( CC \ { 0 } ) ) -> { 1 , -u 1 } C_ ( CC \ { 0 } ) ) |
30 |
24 28 29
|
mp2an |
|- { 1 , -u 1 } C_ ( CC \ { 0 } ) |
31 |
|
ressabs |
|- ( ( ( CC \ { 0 } ) e. _V /\ { 1 , -u 1 } C_ ( CC \ { 0 } ) ) -> ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
32 |
20 30 31
|
mp2an |
|- ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
33 |
32
|
eqcomi |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) |
34 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
35 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
36 |
|
cndrng |
|- CCfld e. DivRing |
37 |
34 35 36
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
38 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
39 |
37 13 38
|
invrfval |
|- ( invr ` CCfld ) = ( invg ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
40 |
33 39 7
|
subginv |
|- ( ( { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) /\ ( N ` F ) e. { 1 , -u 1 } ) -> ( ( invr ` CCfld ) ` ( N ` F ) ) = ( ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ` ( N ` F ) ) ) |
41 |
14 18 40
|
sylancr |
|- ( ( D e. Fin /\ F e. P ) -> ( ( invr ` CCfld ) ` ( N ` F ) ) = ( ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ` ( N ` F ) ) ) |
42 |
30 18
|
sselid |
|- ( ( D e. Fin /\ F e. P ) -> ( N ` F ) e. ( CC \ { 0 } ) ) |
43 |
|
eldifsn |
|- ( ( N ` F ) e. ( CC \ { 0 } ) <-> ( ( N ` F ) e. CC /\ ( N ` F ) =/= 0 ) ) |
44 |
42 43
|
sylib |
|- ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) e. CC /\ ( N ` F ) =/= 0 ) ) |
45 |
|
cnfldinv |
|- ( ( ( N ` F ) e. CC /\ ( N ` F ) =/= 0 ) -> ( ( invr ` CCfld ) ` ( N ` F ) ) = ( 1 / ( N ` F ) ) ) |
46 |
44 45
|
syl |
|- ( ( D e. Fin /\ F e. P ) -> ( ( invr ` CCfld ) ` ( N ` F ) ) = ( 1 / ( N ` F ) ) ) |
47 |
41 46
|
eqtr3d |
|- ( ( D e. Fin /\ F e. P ) -> ( ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ` ( N ` F ) ) = ( 1 / ( N ` F ) ) ) |
48 |
9 12 47
|
3eqtr3d |
|- ( ( D e. Fin /\ F e. P ) -> ( N ` `' F ) = ( 1 / ( N ` F ) ) ) |
49 |
|
fvex |
|- ( N ` F ) e. _V |
50 |
49
|
elpr |
|- ( ( N ` F ) e. { 1 , -u 1 } <-> ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) ) |
51 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
52 |
|
oveq2 |
|- ( ( N ` F ) = 1 -> ( 1 / ( N ` F ) ) = ( 1 / 1 ) ) |
53 |
|
id |
|- ( ( N ` F ) = 1 -> ( N ` F ) = 1 ) |
54 |
51 52 53
|
3eqtr4a |
|- ( ( N ` F ) = 1 -> ( 1 / ( N ` F ) ) = ( N ` F ) ) |
55 |
|
divneg2 |
|- ( ( 1 e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> -u ( 1 / 1 ) = ( 1 / -u 1 ) ) |
56 |
21 21 22 55
|
mp3an |
|- -u ( 1 / 1 ) = ( 1 / -u 1 ) |
57 |
51
|
negeqi |
|- -u ( 1 / 1 ) = -u 1 |
58 |
56 57
|
eqtr3i |
|- ( 1 / -u 1 ) = -u 1 |
59 |
|
oveq2 |
|- ( ( N ` F ) = -u 1 -> ( 1 / ( N ` F ) ) = ( 1 / -u 1 ) ) |
60 |
|
id |
|- ( ( N ` F ) = -u 1 -> ( N ` F ) = -u 1 ) |
61 |
58 59 60
|
3eqtr4a |
|- ( ( N ` F ) = -u 1 -> ( 1 / ( N ` F ) ) = ( N ` F ) ) |
62 |
54 61
|
jaoi |
|- ( ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) -> ( 1 / ( N ` F ) ) = ( N ` F ) ) |
63 |
50 62
|
sylbi |
|- ( ( N ` F ) e. { 1 , -u 1 } -> ( 1 / ( N ` F ) ) = ( N ` F ) ) |
64 |
18 63
|
syl |
|- ( ( D e. Fin /\ F e. P ) -> ( 1 / ( N ` F ) ) = ( N ` F ) ) |
65 |
48 64
|
eqtrd |
|- ( ( D e. Fin /\ F e. P ) -> ( N ` `' F ) = ( N ` F ) ) |