| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evpmss.s |  |-  S = ( SymGrp ` D ) | 
						
							| 2 |  | evpmss.p |  |-  P = ( Base ` S ) | 
						
							| 3 |  | psgnevpmb.n |  |-  N = ( pmSgn ` D ) | 
						
							| 4 |  | eldif |  |-  ( F e. ( P \ ( pmEven ` D ) ) <-> ( F e. P /\ -. F e. ( pmEven ` D ) ) ) | 
						
							| 5 |  | simpr |  |-  ( ( D e. Fin /\ F e. P ) -> F e. P ) | 
						
							| 6 | 5 | a1d |  |-  ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = 1 -> F e. P ) ) | 
						
							| 7 | 6 | ancrd |  |-  ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = 1 -> ( F e. P /\ ( N ` F ) = 1 ) ) ) | 
						
							| 8 | 1 2 3 | psgnevpmb |  |-  ( D e. Fin -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( D e. Fin /\ F e. P ) -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) ) | 
						
							| 10 | 7 9 | sylibrd |  |-  ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = 1 -> F e. ( pmEven ` D ) ) ) | 
						
							| 11 | 10 | con3d |  |-  ( ( D e. Fin /\ F e. P ) -> ( -. F e. ( pmEven ` D ) -> -. ( N ` F ) = 1 ) ) | 
						
							| 12 | 11 | impr |  |-  ( ( D e. Fin /\ ( F e. P /\ -. F e. ( pmEven ` D ) ) ) -> -. ( N ` F ) = 1 ) | 
						
							| 13 | 4 12 | sylan2b |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> -. ( N ` F ) = 1 ) | 
						
							| 14 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) | 
						
							| 15 | 1 3 14 | psgnghm2 |  |-  ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 17 | 14 | cnmsgnbas |  |-  { 1 , -u 1 } = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) | 
						
							| 18 | 2 17 | ghmf |  |-  ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> N : P --> { 1 , -u 1 } ) | 
						
							| 19 | 16 18 | syl |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> N : P --> { 1 , -u 1 } ) | 
						
							| 20 |  | eldifi |  |-  ( F e. ( P \ ( pmEven ` D ) ) -> F e. P ) | 
						
							| 21 | 20 | adantl |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> F e. P ) | 
						
							| 22 | 19 21 | ffvelcdmd |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( N ` F ) e. { 1 , -u 1 } ) | 
						
							| 23 |  | fvex |  |-  ( N ` F ) e. _V | 
						
							| 24 | 23 | elpr |  |-  ( ( N ` F ) e. { 1 , -u 1 } <-> ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) ) | 
						
							| 25 | 22 24 | sylib |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) ) | 
						
							| 26 |  | orel1 |  |-  ( -. ( N ` F ) = 1 -> ( ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) -> ( N ` F ) = -u 1 ) ) | 
						
							| 27 | 13 25 26 | sylc |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( N ` F ) = -u 1 ) |