Step |
Hyp |
Ref |
Expression |
1 |
|
evpmss.s |
|- S = ( SymGrp ` D ) |
2 |
|
evpmss.p |
|- P = ( Base ` S ) |
3 |
|
psgnevpmb.n |
|- N = ( pmSgn ` D ) |
4 |
|
eldif |
|- ( F e. ( P \ ( pmEven ` D ) ) <-> ( F e. P /\ -. F e. ( pmEven ` D ) ) ) |
5 |
|
simpr |
|- ( ( D e. Fin /\ F e. P ) -> F e. P ) |
6 |
5
|
a1d |
|- ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = 1 -> F e. P ) ) |
7 |
6
|
ancrd |
|- ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = 1 -> ( F e. P /\ ( N ` F ) = 1 ) ) ) |
8 |
1 2 3
|
psgnevpmb |
|- ( D e. Fin -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) ) |
9 |
8
|
adantr |
|- ( ( D e. Fin /\ F e. P ) -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) ) |
10 |
7 9
|
sylibrd |
|- ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = 1 -> F e. ( pmEven ` D ) ) ) |
11 |
10
|
con3d |
|- ( ( D e. Fin /\ F e. P ) -> ( -. F e. ( pmEven ` D ) -> -. ( N ` F ) = 1 ) ) |
12 |
11
|
impr |
|- ( ( D e. Fin /\ ( F e. P /\ -. F e. ( pmEven ` D ) ) ) -> -. ( N ` F ) = 1 ) |
13 |
4 12
|
sylan2b |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> -. ( N ` F ) = 1 ) |
14 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
15 |
1 3 14
|
psgnghm2 |
|- ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
16 |
15
|
adantr |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
17 |
14
|
cnmsgnbas |
|- { 1 , -u 1 } = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
18 |
2 17
|
ghmf |
|- ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> N : P --> { 1 , -u 1 } ) |
19 |
16 18
|
syl |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> N : P --> { 1 , -u 1 } ) |
20 |
|
eldifi |
|- ( F e. ( P \ ( pmEven ` D ) ) -> F e. P ) |
21 |
20
|
adantl |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> F e. P ) |
22 |
19 21
|
ffvelrnd |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( N ` F ) e. { 1 , -u 1 } ) |
23 |
|
fvex |
|- ( N ` F ) e. _V |
24 |
23
|
elpr |
|- ( ( N ` F ) e. { 1 , -u 1 } <-> ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) ) |
25 |
22 24
|
sylib |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) ) |
26 |
|
orel1 |
|- ( -. ( N ` F ) = 1 -> ( ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) -> ( N ` F ) = -u 1 ) ) |
27 |
13 25 26
|
sylc |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( N ` F ) = -u 1 ) |