Metamath Proof Explorer


Theorem psgnodpmr

Description: If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s
|- S = ( SymGrp ` D )
evpmss.p
|- P = ( Base ` S )
psgnevpmb.n
|- N = ( pmSgn ` D )
Assertion psgnodpmr
|- ( ( D e. Fin /\ F e. P /\ ( N ` F ) = -u 1 ) -> F e. ( P \ ( pmEven ` D ) ) )

Proof

Step Hyp Ref Expression
1 evpmss.s
 |-  S = ( SymGrp ` D )
2 evpmss.p
 |-  P = ( Base ` S )
3 psgnevpmb.n
 |-  N = ( pmSgn ` D )
4 simp2
 |-  ( ( D e. Fin /\ F e. P /\ ( N ` F ) = -u 1 ) -> F e. P )
5 1 2 3 psgnevpm
 |-  ( ( D e. Fin /\ F e. ( pmEven ` D ) ) -> ( N ` F ) = 1 )
6 5 ex
 |-  ( D e. Fin -> ( F e. ( pmEven ` D ) -> ( N ` F ) = 1 ) )
7 6 adantr
 |-  ( ( D e. Fin /\ F e. P ) -> ( F e. ( pmEven ` D ) -> ( N ` F ) = 1 ) )
8 neg1rr
 |-  -u 1 e. RR
9 neg1lt0
 |-  -u 1 < 0
10 0lt1
 |-  0 < 1
11 0re
 |-  0 e. RR
12 1re
 |-  1 e. RR
13 8 11 12 lttri
 |-  ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 )
14 9 10 13 mp2an
 |-  -u 1 < 1
15 8 14 gtneii
 |-  1 =/= -u 1
16 neeq1
 |-  ( ( N ` F ) = 1 -> ( ( N ` F ) =/= -u 1 <-> 1 =/= -u 1 ) )
17 15 16 mpbiri
 |-  ( ( N ` F ) = 1 -> ( N ` F ) =/= -u 1 )
18 7 17 syl6
 |-  ( ( D e. Fin /\ F e. P ) -> ( F e. ( pmEven ` D ) -> ( N ` F ) =/= -u 1 ) )
19 18 necon2bd
 |-  ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = -u 1 -> -. F e. ( pmEven ` D ) ) )
20 19 3impia
 |-  ( ( D e. Fin /\ F e. P /\ ( N ` F ) = -u 1 ) -> -. F e. ( pmEven ` D ) )
21 4 20 eldifd
 |-  ( ( D e. Fin /\ F e. P /\ ( N ` F ) = -u 1 ) -> F e. ( P \ ( pmEven ` D ) ) )