Step |
Hyp |
Ref |
Expression |
1 |
|
psgnprfval.0 |
|- D = { 1 , 2 } |
2 |
|
psgnprfval.g |
|- G = ( SymGrp ` D ) |
3 |
|
psgnprfval.b |
|- B = ( Base ` G ) |
4 |
|
psgnprfval.t |
|- T = ran ( pmTrsp ` D ) |
5 |
|
psgnprfval.n |
|- N = ( pmSgn ` D ) |
6 |
|
prex |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. _V |
7 |
6
|
snid |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. { { <. 1 , 2 >. , <. 2 , 1 >. } } |
8 |
1
|
fveq2i |
|- ( pmTrsp ` D ) = ( pmTrsp ` { 1 , 2 } ) |
9 |
8
|
rneqi |
|- ran ( pmTrsp ` D ) = ran ( pmTrsp ` { 1 , 2 } ) |
10 |
|
pmtrprfvalrn |
|- ran ( pmTrsp ` { 1 , 2 } ) = { { <. 1 , 2 >. , <. 2 , 1 >. } } |
11 |
9 10
|
eqtri |
|- ran ( pmTrsp ` D ) = { { <. 1 , 2 >. , <. 2 , 1 >. } } |
12 |
7 11
|
eleqtrri |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. ran ( pmTrsp ` D ) |
13 |
12 4
|
eleqtrri |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. T |
14 |
2 4 5
|
psgnpmtr |
|- ( { <. 1 , 2 >. , <. 2 , 1 >. } e. T -> ( N ` { <. 1 , 2 >. , <. 2 , 1 >. } ) = -u 1 ) |
15 |
13 14
|
ax-mp |
|- ( N ` { <. 1 , 2 >. , <. 2 , 1 >. } ) = -u 1 |