Metamath Proof Explorer


Theorem psgnprfval2

Description: The permutation sign of the transposition for a pair. (Contributed by AV, 10-Dec-2018)

Ref Expression
Hypotheses psgnprfval.0
|- D = { 1 , 2 }
psgnprfval.g
|- G = ( SymGrp ` D )
psgnprfval.b
|- B = ( Base ` G )
psgnprfval.t
|- T = ran ( pmTrsp ` D )
psgnprfval.n
|- N = ( pmSgn ` D )
Assertion psgnprfval2
|- ( N ` { <. 1 , 2 >. , <. 2 , 1 >. } ) = -u 1

Proof

Step Hyp Ref Expression
1 psgnprfval.0
 |-  D = { 1 , 2 }
2 psgnprfval.g
 |-  G = ( SymGrp ` D )
3 psgnprfval.b
 |-  B = ( Base ` G )
4 psgnprfval.t
 |-  T = ran ( pmTrsp ` D )
5 psgnprfval.n
 |-  N = ( pmSgn ` D )
6 prex
 |-  { <. 1 , 2 >. , <. 2 , 1 >. } e. _V
7 6 snid
 |-  { <. 1 , 2 >. , <. 2 , 1 >. } e. { { <. 1 , 2 >. , <. 2 , 1 >. } }
8 1 fveq2i
 |-  ( pmTrsp ` D ) = ( pmTrsp ` { 1 , 2 } )
9 8 rneqi
 |-  ran ( pmTrsp ` D ) = ran ( pmTrsp ` { 1 , 2 } )
10 pmtrprfvalrn
 |-  ran ( pmTrsp ` { 1 , 2 } ) = { { <. 1 , 2 >. , <. 2 , 1 >. } }
11 9 10 eqtri
 |-  ran ( pmTrsp ` D ) = { { <. 1 , 2 >. , <. 2 , 1 >. } }
12 7 11 eleqtrri
 |-  { <. 1 , 2 >. , <. 2 , 1 >. } e. ran ( pmTrsp ` D )
13 12 4 eleqtrri
 |-  { <. 1 , 2 >. , <. 2 , 1 >. } e. T
14 2 4 5 psgnpmtr
 |-  ( { <. 1 , 2 >. , <. 2 , 1 >. } e. T -> ( N ` { <. 1 , 2 >. , <. 2 , 1 >. } ) = -u 1 )
15 13 14 ax-mp
 |-  ( N ` { <. 1 , 2 >. , <. 2 , 1 >. } ) = -u 1