Step |
Hyp |
Ref |
Expression |
1 |
|
psgnran.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
psgnran.s |
|- S = ( pmSgn ` N ) |
3 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
4 |
3 1
|
sygbasnfpfi |
|- ( ( N e. Fin /\ Q e. P ) -> dom ( Q \ _I ) e. Fin ) |
5 |
4
|
ex |
|- ( N e. Fin -> ( Q e. P -> dom ( Q \ _I ) e. Fin ) ) |
6 |
5
|
pm4.71d |
|- ( N e. Fin -> ( Q e. P <-> ( Q e. P /\ dom ( Q \ _I ) e. Fin ) ) ) |
7 |
3 2 1
|
psgneldm |
|- ( Q e. dom S <-> ( Q e. P /\ dom ( Q \ _I ) e. Fin ) ) |
8 |
6 7
|
bitr4di |
|- ( N e. Fin -> ( Q e. P <-> Q e. dom S ) ) |
9 |
|
eqid |
|- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
10 |
3 9 2
|
psgnvali |
|- ( Q e. dom S -> E. w e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum w ) /\ ( S ` Q ) = ( -u 1 ^ ( # ` w ) ) ) ) |
11 |
|
lencl |
|- ( w e. Word ran ( pmTrsp ` N ) -> ( # ` w ) e. NN0 ) |
12 |
11
|
nn0zd |
|- ( w e. Word ran ( pmTrsp ` N ) -> ( # ` w ) e. ZZ ) |
13 |
|
m1expcl2 |
|- ( ( # ` w ) e. ZZ -> ( -u 1 ^ ( # ` w ) ) e. { -u 1 , 1 } ) |
14 |
|
prcom |
|- { -u 1 , 1 } = { 1 , -u 1 } |
15 |
13 14
|
eleqtrdi |
|- ( ( # ` w ) e. ZZ -> ( -u 1 ^ ( # ` w ) ) e. { 1 , -u 1 } ) |
16 |
12 15
|
syl |
|- ( w e. Word ran ( pmTrsp ` N ) -> ( -u 1 ^ ( # ` w ) ) e. { 1 , -u 1 } ) |
17 |
16
|
adantl |
|- ( ( N e. Fin /\ w e. Word ran ( pmTrsp ` N ) ) -> ( -u 1 ^ ( # ` w ) ) e. { 1 , -u 1 } ) |
18 |
|
eleq1a |
|- ( ( -u 1 ^ ( # ` w ) ) e. { 1 , -u 1 } -> ( ( S ` Q ) = ( -u 1 ^ ( # ` w ) ) -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
19 |
17 18
|
syl |
|- ( ( N e. Fin /\ w e. Word ran ( pmTrsp ` N ) ) -> ( ( S ` Q ) = ( -u 1 ^ ( # ` w ) ) -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
20 |
19
|
adantld |
|- ( ( N e. Fin /\ w e. Word ran ( pmTrsp ` N ) ) -> ( ( Q = ( ( SymGrp ` N ) gsum w ) /\ ( S ` Q ) = ( -u 1 ^ ( # ` w ) ) ) -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
21 |
20
|
rexlimdva |
|- ( N e. Fin -> ( E. w e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum w ) /\ ( S ` Q ) = ( -u 1 ^ ( # ` w ) ) ) -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
22 |
10 21
|
syl5 |
|- ( N e. Fin -> ( Q e. dom S -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
23 |
8 22
|
sylbid |
|- ( N e. Fin -> ( Q e. P -> ( S ` Q ) e. { 1 , -u 1 } ) ) |
24 |
23
|
imp |
|- ( ( N e. Fin /\ Q e. P ) -> ( S ` Q ) e. { 1 , -u 1 } ) |