| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnunilem4.g |
|- G = ( SymGrp ` D ) |
| 2 |
|
psgnunilem4.t |
|- T = ran ( pmTrsp ` D ) |
| 3 |
|
psgnunilem4.d |
|- ( ph -> D e. V ) |
| 4 |
|
psgnunilem4.w1 |
|- ( ph -> W e. Word T ) |
| 5 |
|
psgnunilem4.w2 |
|- ( ph -> ( G gsum W ) = ( _I |` D ) ) |
| 6 |
|
wrdfin |
|- ( W e. Word T -> W e. Fin ) |
| 7 |
|
hashcl |
|- ( W e. Fin -> ( # ` W ) e. NN0 ) |
| 8 |
4 6 7
|
3syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
| 9 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 10 |
8 9
|
eleqtrdi |
|- ( ph -> ( # ` W ) e. ( ZZ>= ` 0 ) ) |
| 11 |
|
fveq2 |
|- ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) |
| 12 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 13 |
11 12
|
eqtrdi |
|- ( w = (/) -> ( # ` w ) = 0 ) |
| 14 |
13
|
oveq2d |
|- ( w = (/) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ 0 ) ) |
| 15 |
|
neg1cn |
|- -u 1 e. CC |
| 16 |
|
exp0 |
|- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
| 17 |
15 16
|
ax-mp |
|- ( -u 1 ^ 0 ) = 1 |
| 18 |
14 17
|
eqtrdi |
|- ( w = (/) -> ( -u 1 ^ ( # ` w ) ) = 1 ) |
| 19 |
18
|
2a1d |
|- ( w = (/) -> ( ( ph /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 20 |
|
simpl1 |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ph ) |
| 21 |
20 3
|
syl |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> D e. V ) |
| 22 |
|
simpl3l |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> w e. Word T ) |
| 23 |
|
eqidd |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( # ` w ) = ( # ` w ) ) |
| 24 |
|
wrdfin |
|- ( w e. Word T -> w e. Fin ) |
| 25 |
22 24
|
syl |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> w e. Fin ) |
| 26 |
|
simpl2 |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> w =/= (/) ) |
| 27 |
|
hashnncl |
|- ( w e. Fin -> ( ( # ` w ) e. NN <-> w =/= (/) ) ) |
| 28 |
27
|
biimpar |
|- ( ( w e. Fin /\ w =/= (/) ) -> ( # ` w ) e. NN ) |
| 29 |
25 26 28
|
syl2anc |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( # ` w ) e. NN ) |
| 30 |
|
simpl3r |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( G gsum w ) = ( _I |` D ) ) |
| 31 |
|
fveqeq2 |
|- ( x = y -> ( ( # ` x ) = ( ( # ` w ) - 2 ) <-> ( # ` y ) = ( ( # ` w ) - 2 ) ) ) |
| 32 |
|
oveq2 |
|- ( x = y -> ( G gsum x ) = ( G gsum y ) ) |
| 33 |
32
|
eqeq1d |
|- ( x = y -> ( ( G gsum x ) = ( _I |` D ) <-> ( G gsum y ) = ( _I |` D ) ) ) |
| 34 |
31 33
|
anbi12d |
|- ( x = y -> ( ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) ) |
| 35 |
34
|
cbvrexvw |
|- ( E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) |
| 36 |
35
|
notbii |
|- ( -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> -. E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) |
| 37 |
36
|
biimpi |
|- ( -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) -> -. E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) |
| 38 |
37
|
adantl |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> -. E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) |
| 39 |
1 2 21 22 23 29 30 38
|
psgnunilem3 |
|- -. ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
| 40 |
|
iman |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) <-> -. ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) |
| 41 |
39 40
|
mpbir |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
| 42 |
|
df-rex |
|- ( E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) |
| 43 |
41 42
|
sylib |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) |
| 44 |
|
simprl |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> x e. Word T ) |
| 45 |
|
simprrr |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( G gsum x ) = ( _I |` D ) ) |
| 46 |
44 45
|
jca |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) ) |
| 47 |
|
wrdfin |
|- ( x e. Word T -> x e. Fin ) |
| 48 |
|
hashcl |
|- ( x e. Fin -> ( # ` x ) e. NN0 ) |
| 49 |
44 47 48
|
3syl |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) e. NN0 ) |
| 50 |
|
simp3l |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> w e. Word T ) |
| 51 |
50 24
|
syl |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> w e. Fin ) |
| 52 |
|
simp2 |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> w =/= (/) ) |
| 53 |
51 52 28
|
syl2anc |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( # ` w ) e. NN ) |
| 54 |
53
|
adantr |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` w ) e. NN ) |
| 55 |
|
simprrl |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) = ( ( # ` w ) - 2 ) ) |
| 56 |
54
|
nnred |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` w ) e. RR ) |
| 57 |
|
2rp |
|- 2 e. RR+ |
| 58 |
|
ltsubrp |
|- ( ( ( # ` w ) e. RR /\ 2 e. RR+ ) -> ( ( # ` w ) - 2 ) < ( # ` w ) ) |
| 59 |
56 57 58
|
sylancl |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( # ` w ) - 2 ) < ( # ` w ) ) |
| 60 |
55 59
|
eqbrtrd |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) < ( # ` w ) ) |
| 61 |
|
elfzo0 |
|- ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) <-> ( ( # ` x ) e. NN0 /\ ( # ` w ) e. NN /\ ( # ` x ) < ( # ` w ) ) ) |
| 62 |
49 54 60 61
|
syl3anbrc |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) e. ( 0 ..^ ( # ` w ) ) ) |
| 63 |
|
id |
|- ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) |
| 64 |
63
|
com13 |
|- ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) |
| 65 |
46 62 64
|
sylc |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) |
| 66 |
55
|
oveq2d |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( # ` x ) ) = ( -u 1 ^ ( ( # ` w ) - 2 ) ) ) |
| 67 |
15
|
a1i |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> -u 1 e. CC ) |
| 68 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 69 |
68
|
a1i |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> -u 1 =/= 0 ) |
| 70 |
|
2z |
|- 2 e. ZZ |
| 71 |
70
|
a1i |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> 2 e. ZZ ) |
| 72 |
54
|
nnzd |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` w ) e. ZZ ) |
| 73 |
67 69 71 72
|
expsubd |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( ( # ` w ) - 2 ) ) = ( ( -u 1 ^ ( # ` w ) ) / ( -u 1 ^ 2 ) ) ) |
| 74 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
| 75 |
74
|
oveq2i |
|- ( ( -u 1 ^ ( # ` w ) ) / ( -u 1 ^ 2 ) ) = ( ( -u 1 ^ ( # ` w ) ) / 1 ) |
| 76 |
|
m1expcl |
|- ( ( # ` w ) e. ZZ -> ( -u 1 ^ ( # ` w ) ) e. ZZ ) |
| 77 |
76
|
zcnd |
|- ( ( # ` w ) e. ZZ -> ( -u 1 ^ ( # ` w ) ) e. CC ) |
| 78 |
72 77
|
syl |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( # ` w ) ) e. CC ) |
| 79 |
78
|
div1d |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( -u 1 ^ ( # ` w ) ) / 1 ) = ( -u 1 ^ ( # ` w ) ) ) |
| 80 |
75 79
|
eqtrid |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( -u 1 ^ ( # ` w ) ) / ( -u 1 ^ 2 ) ) = ( -u 1 ^ ( # ` w ) ) ) |
| 81 |
66 73 80
|
3eqtrd |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( # ` x ) ) = ( -u 1 ^ ( # ` w ) ) ) |
| 82 |
81
|
eqeq1d |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( -u 1 ^ ( # ` x ) ) = 1 <-> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 83 |
65 82
|
sylibd |
|- ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 84 |
83
|
ex |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 85 |
84
|
com23 |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 86 |
85
|
alimdv |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> A. x ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 87 |
|
19.23v |
|- ( A. x ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) <-> ( E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 88 |
86 87
|
imbitrdi |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 89 |
43 88
|
mpid |
|- ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 90 |
89
|
3exp |
|- ( ph -> ( w =/= (/) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) ) |
| 91 |
90
|
com34 |
|- ( ph -> ( w =/= (/) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) ) |
| 92 |
91
|
com12 |
|- ( w =/= (/) -> ( ph -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) ) |
| 93 |
92
|
impd |
|- ( w =/= (/) -> ( ( ph /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) |
| 94 |
19 93
|
pm2.61ine |
|- ( ( ph /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 95 |
94
|
3adant2 |
|- ( ( ph /\ ( # ` w ) e. ( 0 ... ( # ` W ) ) /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) |
| 96 |
|
eleq1 |
|- ( w = x -> ( w e. Word T <-> x e. Word T ) ) |
| 97 |
|
oveq2 |
|- ( w = x -> ( G gsum w ) = ( G gsum x ) ) |
| 98 |
97
|
eqeq1d |
|- ( w = x -> ( ( G gsum w ) = ( _I |` D ) <-> ( G gsum x ) = ( _I |` D ) ) ) |
| 99 |
96 98
|
anbi12d |
|- ( w = x -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) <-> ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) ) ) |
| 100 |
|
fveq2 |
|- ( w = x -> ( # ` w ) = ( # ` x ) ) |
| 101 |
100
|
oveq2d |
|- ( w = x -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` x ) ) ) |
| 102 |
101
|
eqeq1d |
|- ( w = x -> ( ( -u 1 ^ ( # ` w ) ) = 1 <-> ( -u 1 ^ ( # ` x ) ) = 1 ) ) |
| 103 |
99 102
|
imbi12d |
|- ( w = x -> ( ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) <-> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) |
| 104 |
|
eleq1 |
|- ( w = W -> ( w e. Word T <-> W e. Word T ) ) |
| 105 |
|
oveq2 |
|- ( w = W -> ( G gsum w ) = ( G gsum W ) ) |
| 106 |
105
|
eqeq1d |
|- ( w = W -> ( ( G gsum w ) = ( _I |` D ) <-> ( G gsum W ) = ( _I |` D ) ) ) |
| 107 |
104 106
|
anbi12d |
|- ( w = W -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) <-> ( W e. Word T /\ ( G gsum W ) = ( _I |` D ) ) ) ) |
| 108 |
|
fveq2 |
|- ( w = W -> ( # ` w ) = ( # ` W ) ) |
| 109 |
108
|
oveq2d |
|- ( w = W -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` W ) ) ) |
| 110 |
109
|
eqeq1d |
|- ( w = W -> ( ( -u 1 ^ ( # ` w ) ) = 1 <-> ( -u 1 ^ ( # ` W ) ) = 1 ) ) |
| 111 |
107 110
|
imbi12d |
|- ( w = W -> ( ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) <-> ( ( W e. Word T /\ ( G gsum W ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` W ) ) = 1 ) ) ) |
| 112 |
4 10 95 103 111 100 108
|
uzindi |
|- ( ph -> ( ( W e. Word T /\ ( G gsum W ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` W ) ) = 1 ) ) |
| 113 |
4 5 112
|
mp2and |
|- ( ph -> ( -u 1 ^ ( # ` W ) ) = 1 ) |