| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnunilem2.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgnunilem2.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 3 |  | psgnunilem2.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | psgnunilem2.w |  |-  ( ph -> W e. Word T ) | 
						
							| 5 |  | psgnunilem2.id |  |-  ( ph -> ( G gsum W ) = ( _I |` D ) ) | 
						
							| 6 |  | psgnunilem2.l |  |-  ( ph -> ( # ` W ) = L ) | 
						
							| 7 |  | psgnunilem2.ix |  |-  ( ph -> I e. ( 0 ..^ L ) ) | 
						
							| 8 |  | psgnunilem2.a |  |-  ( ph -> A e. dom ( ( W ` I ) \ _I ) ) | 
						
							| 9 |  | psgnunilem2.al |  |-  ( ph -> A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) ) | 
						
							| 10 |  | noel |  |-  -. A e. (/) | 
						
							| 11 | 5 | difeq1d |  |-  ( ph -> ( ( G gsum W ) \ _I ) = ( ( _I |` D ) \ _I ) ) | 
						
							| 12 | 11 | dmeqd |  |-  ( ph -> dom ( ( G gsum W ) \ _I ) = dom ( ( _I |` D ) \ _I ) ) | 
						
							| 13 |  | resss |  |-  ( _I |` D ) C_ _I | 
						
							| 14 |  | ssdif0 |  |-  ( ( _I |` D ) C_ _I <-> ( ( _I |` D ) \ _I ) = (/) ) | 
						
							| 15 | 13 14 | mpbi |  |-  ( ( _I |` D ) \ _I ) = (/) | 
						
							| 16 | 15 | dmeqi |  |-  dom ( ( _I |` D ) \ _I ) = dom (/) | 
						
							| 17 |  | dm0 |  |-  dom (/) = (/) | 
						
							| 18 | 16 17 | eqtri |  |-  dom ( ( _I |` D ) \ _I ) = (/) | 
						
							| 19 | 12 18 | eqtrdi |  |-  ( ph -> dom ( ( G gsum W ) \ _I ) = (/) ) | 
						
							| 20 | 19 | eleq2d |  |-  ( ph -> ( A e. dom ( ( G gsum W ) \ _I ) <-> A e. (/) ) ) | 
						
							| 21 | 10 20 | mtbiri |  |-  ( ph -> -. A e. dom ( ( G gsum W ) \ _I ) ) | 
						
							| 22 | 1 | symggrp |  |-  ( D e. V -> G e. Grp ) | 
						
							| 23 |  | grpmnd |  |-  ( G e. Grp -> G e. Mnd ) | 
						
							| 24 | 3 22 23 | 3syl |  |-  ( ph -> G e. Mnd ) | 
						
							| 25 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 26 | 2 1 25 | symgtrf |  |-  T C_ ( Base ` G ) | 
						
							| 27 |  | sswrd |  |-  ( T C_ ( Base ` G ) -> Word T C_ Word ( Base ` G ) ) | 
						
							| 28 | 26 27 | mp1i |  |-  ( ph -> Word T C_ Word ( Base ` G ) ) | 
						
							| 29 | 28 4 | sseldd |  |-  ( ph -> W e. Word ( Base ` G ) ) | 
						
							| 30 |  | pfxcl |  |-  ( W e. Word ( Base ` G ) -> ( W prefix I ) e. Word ( Base ` G ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ph -> ( W prefix I ) e. Word ( Base ` G ) ) | 
						
							| 32 | 25 | gsumwcl |  |-  ( ( G e. Mnd /\ ( W prefix I ) e. Word ( Base ` G ) ) -> ( G gsum ( W prefix I ) ) e. ( Base ` G ) ) | 
						
							| 33 | 24 31 32 | syl2anc |  |-  ( ph -> ( G gsum ( W prefix I ) ) e. ( Base ` G ) ) | 
						
							| 34 | 1 25 | symgbasf1o |  |-  ( ( G gsum ( W prefix I ) ) e. ( Base ` G ) -> ( G gsum ( W prefix I ) ) : D -1-1-onto-> D ) | 
						
							| 35 | 33 34 | syl |  |-  ( ph -> ( G gsum ( W prefix I ) ) : D -1-1-onto-> D ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( G gsum ( W prefix I ) ) : D -1-1-onto-> D ) | 
						
							| 37 |  | wrdf |  |-  ( W e. Word T -> W : ( 0 ..^ ( # ` W ) ) --> T ) | 
						
							| 38 | 4 37 | syl |  |-  ( ph -> W : ( 0 ..^ ( # ` W ) ) --> T ) | 
						
							| 39 | 6 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ L ) ) | 
						
							| 40 | 7 39 | eleqtrrd |  |-  ( ph -> I e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 41 | 38 40 | ffvelcdmd |  |-  ( ph -> ( W ` I ) e. T ) | 
						
							| 42 | 26 41 | sselid |  |-  ( ph -> ( W ` I ) e. ( Base ` G ) ) | 
						
							| 43 | 1 25 | symgbasf1o |  |-  ( ( W ` I ) e. ( Base ` G ) -> ( W ` I ) : D -1-1-onto-> D ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> ( W ` I ) : D -1-1-onto-> D ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( W ` I ) : D -1-1-onto-> D ) | 
						
							| 46 | 1 25 | symgsssg |  |-  ( D e. V -> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } e. ( SubGrp ` G ) ) | 
						
							| 47 |  | subgsubm |  |-  ( { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } e. ( SubGrp ` G ) -> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } e. ( SubMnd ` G ) ) | 
						
							| 48 | 3 46 47 | 3syl |  |-  ( ph -> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } e. ( SubMnd ` G ) ) | 
						
							| 49 |  | fzossfz |  |-  ( 0 ..^ L ) C_ ( 0 ... L ) | 
						
							| 50 | 49 7 | sselid |  |-  ( ph -> I e. ( 0 ... L ) ) | 
						
							| 51 | 6 | oveq2d |  |-  ( ph -> ( 0 ... ( # ` W ) ) = ( 0 ... L ) ) | 
						
							| 52 | 50 51 | eleqtrrd |  |-  ( ph -> I e. ( 0 ... ( # ` W ) ) ) | 
						
							| 53 |  | pfxmpt |  |-  ( ( W e. Word T /\ I e. ( 0 ... ( # ` W ) ) ) -> ( W prefix I ) = ( s e. ( 0 ..^ I ) |-> ( W ` s ) ) ) | 
						
							| 54 | 4 52 53 | syl2anc |  |-  ( ph -> ( W prefix I ) = ( s e. ( 0 ..^ I ) |-> ( W ` s ) ) ) | 
						
							| 55 |  | difeq1 |  |-  ( j = ( W ` s ) -> ( j \ _I ) = ( ( W ` s ) \ _I ) ) | 
						
							| 56 | 55 | dmeqd |  |-  ( j = ( W ` s ) -> dom ( j \ _I ) = dom ( ( W ` s ) \ _I ) ) | 
						
							| 57 | 56 | sseq1d |  |-  ( j = ( W ` s ) -> ( dom ( j \ _I ) C_ ( _V \ { A } ) <-> dom ( ( W ` s ) \ _I ) C_ ( _V \ { A } ) ) ) | 
						
							| 58 |  | disj2 |  |-  ( ( dom ( ( W ` s ) \ _I ) i^i { A } ) = (/) <-> dom ( ( W ` s ) \ _I ) C_ ( _V \ { A } ) ) | 
						
							| 59 |  | disjsn |  |-  ( ( dom ( ( W ` s ) \ _I ) i^i { A } ) = (/) <-> -. A e. dom ( ( W ` s ) \ _I ) ) | 
						
							| 60 | 58 59 | bitr3i |  |-  ( dom ( ( W ` s ) \ _I ) C_ ( _V \ { A } ) <-> -. A e. dom ( ( W ` s ) \ _I ) ) | 
						
							| 61 | 57 60 | bitrdi |  |-  ( j = ( W ` s ) -> ( dom ( j \ _I ) C_ ( _V \ { A } ) <-> -. A e. dom ( ( W ` s ) \ _I ) ) ) | 
						
							| 62 |  | elfzuz3 |  |-  ( I e. ( 0 ... L ) -> L e. ( ZZ>= ` I ) ) | 
						
							| 63 | 50 62 | syl |  |-  ( ph -> L e. ( ZZ>= ` I ) ) | 
						
							| 64 | 6 63 | eqeltrd |  |-  ( ph -> ( # ` W ) e. ( ZZ>= ` I ) ) | 
						
							| 65 |  | fzoss2 |  |-  ( ( # ` W ) e. ( ZZ>= ` I ) -> ( 0 ..^ I ) C_ ( 0 ..^ ( # ` W ) ) ) | 
						
							| 66 | 64 65 | syl |  |-  ( ph -> ( 0 ..^ I ) C_ ( 0 ..^ ( # ` W ) ) ) | 
						
							| 67 | 66 | sselda |  |-  ( ( ph /\ s e. ( 0 ..^ I ) ) -> s e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 68 | 38 | ffvelcdmda |  |-  ( ( ph /\ s e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` s ) e. T ) | 
						
							| 69 | 26 68 | sselid |  |-  ( ( ph /\ s e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` s ) e. ( Base ` G ) ) | 
						
							| 70 | 67 69 | syldan |  |-  ( ( ph /\ s e. ( 0 ..^ I ) ) -> ( W ` s ) e. ( Base ` G ) ) | 
						
							| 71 |  | fveq2 |  |-  ( k = s -> ( W ` k ) = ( W ` s ) ) | 
						
							| 72 | 71 | difeq1d |  |-  ( k = s -> ( ( W ` k ) \ _I ) = ( ( W ` s ) \ _I ) ) | 
						
							| 73 | 72 | dmeqd |  |-  ( k = s -> dom ( ( W ` k ) \ _I ) = dom ( ( W ` s ) \ _I ) ) | 
						
							| 74 | 73 | eleq2d |  |-  ( k = s -> ( A e. dom ( ( W ` k ) \ _I ) <-> A e. dom ( ( W ` s ) \ _I ) ) ) | 
						
							| 75 | 74 | notbid |  |-  ( k = s -> ( -. A e. dom ( ( W ` k ) \ _I ) <-> -. A e. dom ( ( W ` s ) \ _I ) ) ) | 
						
							| 76 | 75 | cbvralvw |  |-  ( A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) <-> A. s e. ( 0 ..^ I ) -. A e. dom ( ( W ` s ) \ _I ) ) | 
						
							| 77 | 9 76 | sylib |  |-  ( ph -> A. s e. ( 0 ..^ I ) -. A e. dom ( ( W ` s ) \ _I ) ) | 
						
							| 78 | 77 | r19.21bi |  |-  ( ( ph /\ s e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` s ) \ _I ) ) | 
						
							| 79 | 61 70 78 | elrabd |  |-  ( ( ph /\ s e. ( 0 ..^ I ) ) -> ( W ` s ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) | 
						
							| 80 | 54 79 | fmpt3d |  |-  ( ph -> ( W prefix I ) : ( 0 ..^ I ) --> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( W prefix I ) : ( 0 ..^ I ) --> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) | 
						
							| 82 |  | iswrdi |  |-  ( ( W prefix I ) : ( 0 ..^ I ) --> { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } -> ( W prefix I ) e. Word { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) | 
						
							| 83 | 81 82 | syl |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( W prefix I ) e. Word { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) | 
						
							| 84 |  | gsumwsubmcl |  |-  ( ( { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } e. ( SubMnd ` G ) /\ ( W prefix I ) e. Word { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) -> ( G gsum ( W prefix I ) ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) | 
						
							| 85 | 48 83 84 | syl2an2r |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( G gsum ( W prefix I ) ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } ) | 
						
							| 86 |  | difeq1 |  |-  ( j = ( G gsum ( W prefix I ) ) -> ( j \ _I ) = ( ( G gsum ( W prefix I ) ) \ _I ) ) | 
						
							| 87 | 86 | dmeqd |  |-  ( j = ( G gsum ( W prefix I ) ) -> dom ( j \ _I ) = dom ( ( G gsum ( W prefix I ) ) \ _I ) ) | 
						
							| 88 | 87 | sseq1d |  |-  ( j = ( G gsum ( W prefix I ) ) -> ( dom ( j \ _I ) C_ ( _V \ { A } ) <-> dom ( ( G gsum ( W prefix I ) ) \ _I ) C_ ( _V \ { A } ) ) ) | 
						
							| 89 | 88 | elrab |  |-  ( ( G gsum ( W prefix I ) ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } <-> ( ( G gsum ( W prefix I ) ) e. ( Base ` G ) /\ dom ( ( G gsum ( W prefix I ) ) \ _I ) C_ ( _V \ { A } ) ) ) | 
						
							| 90 | 89 | simprbi |  |-  ( ( G gsum ( W prefix I ) ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } -> dom ( ( G gsum ( W prefix I ) ) \ _I ) C_ ( _V \ { A } ) ) | 
						
							| 91 |  | disj2 |  |-  ( ( dom ( ( G gsum ( W prefix I ) ) \ _I ) i^i { A } ) = (/) <-> dom ( ( G gsum ( W prefix I ) ) \ _I ) C_ ( _V \ { A } ) ) | 
						
							| 92 |  | disjsn |  |-  ( ( dom ( ( G gsum ( W prefix I ) ) \ _I ) i^i { A } ) = (/) <-> -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) ) | 
						
							| 93 | 91 92 | bitr3i |  |-  ( dom ( ( G gsum ( W prefix I ) ) \ _I ) C_ ( _V \ { A } ) <-> -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) ) | 
						
							| 94 | 90 93 | sylib |  |-  ( ( G gsum ( W prefix I ) ) e. { j e. ( Base ` G ) | dom ( j \ _I ) C_ ( _V \ { A } ) } -> -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) ) | 
						
							| 95 | 85 94 | syl |  |-  ( ( ph /\ ( I + 1 ) = L ) -> -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) ) | 
						
							| 96 | 8 | adantr |  |-  ( ( ph /\ ( I + 1 ) = L ) -> A e. dom ( ( W ` I ) \ _I ) ) | 
						
							| 97 | 95 96 | jca |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) /\ A e. dom ( ( W ` I ) \ _I ) ) ) | 
						
							| 98 | 97 | olcd |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( ( A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) /\ -. A e. dom ( ( W ` I ) \ _I ) ) \/ ( -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) /\ A e. dom ( ( W ` I ) \ _I ) ) ) ) | 
						
							| 99 |  | excxor |  |-  ( ( A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) \/_ A e. dom ( ( W ` I ) \ _I ) ) <-> ( ( A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) /\ -. A e. dom ( ( W ` I ) \ _I ) ) \/ ( -. A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) /\ A e. dom ( ( W ` I ) \ _I ) ) ) ) | 
						
							| 100 | 98 99 | sylibr |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) \/_ A e. dom ( ( W ` I ) \ _I ) ) ) | 
						
							| 101 |  | f1omvdco3 |  |-  ( ( ( G gsum ( W prefix I ) ) : D -1-1-onto-> D /\ ( W ` I ) : D -1-1-onto-> D /\ ( A e. dom ( ( G gsum ( W prefix I ) ) \ _I ) \/_ A e. dom ( ( W ` I ) \ _I ) ) ) -> A e. dom ( ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) \ _I ) ) | 
						
							| 102 | 36 45 100 101 | syl3anc |  |-  ( ( ph /\ ( I + 1 ) = L ) -> A e. dom ( ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) \ _I ) ) | 
						
							| 103 |  | elfzo0 |  |-  ( I e. ( 0 ..^ L ) <-> ( I e. NN0 /\ L e. NN /\ I < L ) ) | 
						
							| 104 | 103 | simp2bi |  |-  ( I e. ( 0 ..^ L ) -> L e. NN ) | 
						
							| 105 | 7 104 | syl |  |-  ( ph -> L e. NN ) | 
						
							| 106 | 6 105 | eqeltrd |  |-  ( ph -> ( # ` W ) e. NN ) | 
						
							| 107 |  | wrdfin |  |-  ( W e. Word T -> W e. Fin ) | 
						
							| 108 |  | hashnncl |  |-  ( W e. Fin -> ( ( # ` W ) e. NN <-> W =/= (/) ) ) | 
						
							| 109 | 4 107 108 | 3syl |  |-  ( ph -> ( ( # ` W ) e. NN <-> W =/= (/) ) ) | 
						
							| 110 | 106 109 | mpbid |  |-  ( ph -> W =/= (/) ) | 
						
							| 111 | 110 | adantr |  |-  ( ( ph /\ ( I + 1 ) = L ) -> W =/= (/) ) | 
						
							| 112 |  | pfxlswccat |  |-  ( ( W e. Word T /\ W =/= (/) ) -> ( ( W prefix ( ( # ` W ) - 1 ) ) ++ <" ( lastS ` W ) "> ) = W ) | 
						
							| 113 | 112 | eqcomd |  |-  ( ( W e. Word T /\ W =/= (/) ) -> W = ( ( W prefix ( ( # ` W ) - 1 ) ) ++ <" ( lastS ` W ) "> ) ) | 
						
							| 114 | 4 111 113 | syl2an2r |  |-  ( ( ph /\ ( I + 1 ) = L ) -> W = ( ( W prefix ( ( # ` W ) - 1 ) ) ++ <" ( lastS ` W ) "> ) ) | 
						
							| 115 | 6 | oveq1d |  |-  ( ph -> ( ( # ` W ) - 1 ) = ( L - 1 ) ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( ( # ` W ) - 1 ) = ( L - 1 ) ) | 
						
							| 117 | 105 | nncnd |  |-  ( ph -> L e. CC ) | 
						
							| 118 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 119 |  | elfzoelz |  |-  ( I e. ( 0 ..^ L ) -> I e. ZZ ) | 
						
							| 120 | 7 119 | syl |  |-  ( ph -> I e. ZZ ) | 
						
							| 121 | 120 | zcnd |  |-  ( ph -> I e. CC ) | 
						
							| 122 | 117 118 121 | subadd2d |  |-  ( ph -> ( ( L - 1 ) = I <-> ( I + 1 ) = L ) ) | 
						
							| 123 | 122 | biimpar |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( L - 1 ) = I ) | 
						
							| 124 | 116 123 | eqtrd |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( ( # ` W ) - 1 ) = I ) | 
						
							| 125 |  | oveq2 |  |-  ( ( ( # ` W ) - 1 ) = I -> ( W prefix ( ( # ` W ) - 1 ) ) = ( W prefix I ) ) | 
						
							| 126 | 125 | adantl |  |-  ( ( ph /\ ( ( # ` W ) - 1 ) = I ) -> ( W prefix ( ( # ` W ) - 1 ) ) = ( W prefix I ) ) | 
						
							| 127 |  | lsw |  |-  ( W e. Word T -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 128 | 4 127 | syl |  |-  ( ph -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 129 |  | fveq2 |  |-  ( ( ( # ` W ) - 1 ) = I -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` I ) ) | 
						
							| 130 | 128 129 | sylan9eq |  |-  ( ( ph /\ ( ( # ` W ) - 1 ) = I ) -> ( lastS ` W ) = ( W ` I ) ) | 
						
							| 131 | 130 | s1eqd |  |-  ( ( ph /\ ( ( # ` W ) - 1 ) = I ) -> <" ( lastS ` W ) "> = <" ( W ` I ) "> ) | 
						
							| 132 | 126 131 | oveq12d |  |-  ( ( ph /\ ( ( # ` W ) - 1 ) = I ) -> ( ( W prefix ( ( # ` W ) - 1 ) ) ++ <" ( lastS ` W ) "> ) = ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) | 
						
							| 133 | 124 132 | syldan |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( ( W prefix ( ( # ` W ) - 1 ) ) ++ <" ( lastS ` W ) "> ) = ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) | 
						
							| 134 | 114 133 | eqtrd |  |-  ( ( ph /\ ( I + 1 ) = L ) -> W = ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) | 
						
							| 135 | 134 | oveq2d |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( G gsum W ) = ( G gsum ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) ) | 
						
							| 136 | 42 | s1cld |  |-  ( ph -> <" ( W ` I ) "> e. Word ( Base ` G ) ) | 
						
							| 137 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 138 | 25 137 | gsumccat |  |-  ( ( G e. Mnd /\ ( W prefix I ) e. Word ( Base ` G ) /\ <" ( W ` I ) "> e. Word ( Base ` G ) ) -> ( G gsum ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) ) | 
						
							| 139 | 24 31 136 138 | syl3anc |  |-  ( ph -> ( G gsum ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) ) | 
						
							| 140 | 139 | adantr |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( G gsum ( ( W prefix I ) ++ <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) ) | 
						
							| 141 | 25 | gsumws1 |  |-  ( ( W ` I ) e. ( Base ` G ) -> ( G gsum <" ( W ` I ) "> ) = ( W ` I ) ) | 
						
							| 142 | 42 141 | syl |  |-  ( ph -> ( G gsum <" ( W ` I ) "> ) = ( W ` I ) ) | 
						
							| 143 | 142 | oveq2d |  |-  ( ph -> ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( W ` I ) ) ) | 
						
							| 144 | 1 25 137 | symgov |  |-  ( ( ( G gsum ( W prefix I ) ) e. ( Base ` G ) /\ ( W ` I ) e. ( Base ` G ) ) -> ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( W ` I ) ) = ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) ) | 
						
							| 145 | 33 42 144 | syl2anc |  |-  ( ph -> ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( W ` I ) ) = ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) ) | 
						
							| 146 | 143 145 | eqtrd |  |-  ( ph -> ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) ) | 
						
							| 147 | 146 | adantr |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( ( G gsum ( W prefix I ) ) ( +g ` G ) ( G gsum <" ( W ` I ) "> ) ) = ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) ) | 
						
							| 148 | 135 140 147 | 3eqtrd |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( G gsum W ) = ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) ) | 
						
							| 149 | 148 | difeq1d |  |-  ( ( ph /\ ( I + 1 ) = L ) -> ( ( G gsum W ) \ _I ) = ( ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) \ _I ) ) | 
						
							| 150 | 149 | dmeqd |  |-  ( ( ph /\ ( I + 1 ) = L ) -> dom ( ( G gsum W ) \ _I ) = dom ( ( ( G gsum ( W prefix I ) ) o. ( W ` I ) ) \ _I ) ) | 
						
							| 151 | 102 150 | eleqtrrd |  |-  ( ( ph /\ ( I + 1 ) = L ) -> A e. dom ( ( G gsum W ) \ _I ) ) | 
						
							| 152 | 21 151 | mtand |  |-  ( ph -> -. ( I + 1 ) = L ) | 
						
							| 153 |  | fzostep1 |  |-  ( I e. ( 0 ..^ L ) -> ( ( I + 1 ) e. ( 0 ..^ L ) \/ ( I + 1 ) = L ) ) | 
						
							| 154 | 7 153 | syl |  |-  ( ph -> ( ( I + 1 ) e. ( 0 ..^ L ) \/ ( I + 1 ) = L ) ) | 
						
							| 155 | 154 | ord |  |-  ( ph -> ( -. ( I + 1 ) e. ( 0 ..^ L ) -> ( I + 1 ) = L ) ) | 
						
							| 156 | 152 155 | mt3d |  |-  ( ph -> ( I + 1 ) e. ( 0 ..^ L ) ) |