Step |
Hyp |
Ref |
Expression |
1 |
|
psgnval.g |
|- G = ( SymGrp ` D ) |
2 |
|
psgnval.t |
|- T = ran ( pmTrsp ` D ) |
3 |
|
psgnval.n |
|- N = ( pmSgn ` D ) |
4 |
|
eqeq1 |
|- ( t = P -> ( t = ( G gsum w ) <-> P = ( G gsum w ) ) ) |
5 |
4
|
anbi1d |
|- ( t = P -> ( ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
6 |
5
|
rexbidv |
|- ( t = P -> ( E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
7 |
6
|
iotabidv |
|- ( t = P -> ( iota s E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
8 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
9 |
|
eqid |
|- { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } = { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } |
10 |
1 8 9 3
|
psgnfn |
|- N Fn { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } |
11 |
10
|
fndmi |
|- dom N = { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } |
12 |
1 8 11 2 3
|
psgnfval |
|- N = ( t e. dom N |-> ( iota s E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
13 |
|
iotaex |
|- ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) e. _V |
14 |
7 12 13
|
fvmpt |
|- ( P e. dom N -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |