Step |
Hyp |
Ref |
Expression |
1 |
|
psgnfvalfi.g |
|- G = ( SymGrp ` D ) |
2 |
|
psgnfvalfi.b |
|- B = ( Base ` G ) |
3 |
|
psgnfvalfi.t |
|- T = ran ( pmTrsp ` D ) |
4 |
|
psgnfvalfi.n |
|- N = ( pmSgn ` D ) |
5 |
|
simpr |
|- ( ( D e. Fin /\ P e. B ) -> P e. B ) |
6 |
1 2
|
sygbasnfpfi |
|- ( ( D e. Fin /\ P e. B ) -> dom ( P \ _I ) e. Fin ) |
7 |
1 4 2
|
psgneldm |
|- ( P e. dom N <-> ( P e. B /\ dom ( P \ _I ) e. Fin ) ) |
8 |
5 6 7
|
sylanbrc |
|- ( ( D e. Fin /\ P e. B ) -> P e. dom N ) |
9 |
1 3 4
|
psgnval |
|- ( P e. dom N -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
10 |
8 9
|
syl |
|- ( ( D e. Fin /\ P e. B ) -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |