| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							psrel | 
							 |-  ( R e. PosetRel -> Rel R )  | 
						
						
							| 2 | 
							
								
							 | 
							brrelex12 | 
							 |-  ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan | 
							 |-  ( ( R e. PosetRel /\ A R B ) -> ( A e. _V /\ B e. _V ) )  | 
						
						
							| 4 | 
							
								
							 | 
							brrelex2 | 
							 |-  ( ( Rel R /\ B R C ) -> C e. _V )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							sylan | 
							 |-  ( ( R e. PosetRel /\ B R C ) -> C e. _V )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							anim12dan | 
							 |-  ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> ( ( A e. _V /\ B e. _V ) /\ C e. _V ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pstr2 | 
							 |-  ( R e. PosetRel -> ( R o. R ) C_ R )  | 
						
						
							| 8 | 
							
								
							 | 
							cotr | 
							 |-  ( ( R o. R ) C_ R <-> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylib | 
							 |-  ( R e. PosetRel -> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							 |-  ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> ( A R B /\ B R C ) )  | 
						
						
							| 12 | 
							
								
							 | 
							breq12 | 
							 |-  ( ( x = A /\ y = B ) -> ( x R y <-> A R B ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3adant3 | 
							 |-  ( ( x = A /\ y = B /\ z = C ) -> ( x R y <-> A R B ) )  | 
						
						
							| 14 | 
							
								
							 | 
							breq12 | 
							 |-  ( ( y = B /\ z = C ) -> ( y R z <-> B R C ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3adant1 | 
							 |-  ( ( x = A /\ y = B /\ z = C ) -> ( y R z <-> B R C ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							anbi12d | 
							 |-  ( ( x = A /\ y = B /\ z = C ) -> ( ( x R y /\ y R z ) <-> ( A R B /\ B R C ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							breq12 | 
							 |-  ( ( x = A /\ z = C ) -> ( x R z <-> A R C ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							3adant2 | 
							 |-  ( ( x = A /\ y = B /\ z = C ) -> ( x R z <-> A R C ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							imbi12d | 
							 |-  ( ( x = A /\ y = B /\ z = C ) -> ( ( ( x R y /\ y R z ) -> x R z ) <-> ( ( A R B /\ B R C ) -> A R C ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							spc3gv | 
							 |-  ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) -> ( ( A R B /\ B R C ) -> A R C ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3expa | 
							 |-  ( ( ( A e. _V /\ B e. _V ) /\ C e. _V ) -> ( A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) -> ( ( A R B /\ B R C ) -> A R C ) ) )  | 
						
						
							| 22 | 
							
								6 10 11 21
							 | 
							syl3c | 
							 |-  ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> A R C )  | 
						
						
							| 23 | 
							
								22
							 | 
							ex | 
							 |-  ( R e. PosetRel -> ( ( A R B /\ B R C ) -> A R C ) )  | 
						
						
							| 24 | 
							
								
							 | 
							psref2 | 
							 |-  ( R e. PosetRel -> ( R i^i `' R ) = ( _I |` U. U. R ) )  | 
						
						
							| 25 | 
							
								
							 | 
							asymref2 | 
							 |-  ( ( R i^i `' R ) = ( _I |` U. U. R ) <-> ( A. x e. U. U. R x R x /\ A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							simplbi | 
							 |-  ( ( R i^i `' R ) = ( _I |` U. U. R ) -> A. x e. U. U. R x R x )  | 
						
						
							| 27 | 
							
								
							 | 
							breq12 | 
							 |-  ( ( x = A /\ x = A ) -> ( x R x <-> A R A ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							anidms | 
							 |-  ( x = A -> ( x R x <-> A R A ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							rspccv | 
							 |-  ( A. x e. U. U. R x R x -> ( A e. U. U. R -> A R A ) )  | 
						
						
							| 30 | 
							
								24 26 29
							 | 
							3syl | 
							 |-  ( R e. PosetRel -> ( A e. U. U. R -> A R A ) )  | 
						
						
							| 31 | 
							
								3
							 | 
							adantrr | 
							 |-  ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> ( A e. _V /\ B e. _V ) )  | 
						
						
							| 32 | 
							
								25
							 | 
							simprbi | 
							 |-  ( ( R i^i `' R ) = ( _I |` U. U. R ) -> A. x A. y ( ( x R y /\ y R x ) -> x = y ) )  | 
						
						
							| 33 | 
							
								24 32
							 | 
							syl | 
							 |-  ( R e. PosetRel -> A. x A. y ( ( x R y /\ y R x ) -> x = y ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							 |-  ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> A. x A. y ( ( x R y /\ y R x ) -> x = y ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simpr | 
							 |-  ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> ( A R B /\ B R A ) )  | 
						
						
							| 36 | 
							
								
							 | 
							breq12 | 
							 |-  ( ( y = B /\ x = A ) -> ( y R x <-> B R A ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ancoms | 
							 |-  ( ( x = A /\ y = B ) -> ( y R x <-> B R A ) )  | 
						
						
							| 38 | 
							
								12 37
							 | 
							anbi12d | 
							 |-  ( ( x = A /\ y = B ) -> ( ( x R y /\ y R x ) <-> ( A R B /\ B R A ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							eqeq12 | 
							 |-  ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							imbi12d | 
							 |-  ( ( x = A /\ y = B ) -> ( ( ( x R y /\ y R x ) -> x = y ) <-> ( ( A R B /\ B R A ) -> A = B ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							spc2gv | 
							 |-  ( ( A e. _V /\ B e. _V ) -> ( A. x A. y ( ( x R y /\ y R x ) -> x = y ) -> ( ( A R B /\ B R A ) -> A = B ) ) )  | 
						
						
							| 42 | 
							
								31 34 35 41
							 | 
							syl3c | 
							 |-  ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> A = B )  | 
						
						
							| 43 | 
							
								42
							 | 
							ex | 
							 |-  ( R e. PosetRel -> ( ( A R B /\ B R A ) -> A = B ) )  | 
						
						
							| 44 | 
							
								23 30 43
							 | 
							3jca | 
							 |-  ( R e. PosetRel -> ( ( ( A R B /\ B R C ) -> A R C ) /\ ( A e. U. U. R -> A R A ) /\ ( ( A R B /\ B R A ) -> A = B ) ) )  |