Step |
Hyp |
Ref |
Expression |
1 |
|
psrel |
|- ( R e. PosetRel -> Rel R ) |
2 |
|
brrelex12 |
|- ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |
3 |
1 2
|
sylan |
|- ( ( R e. PosetRel /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |
4 |
|
brrelex2 |
|- ( ( Rel R /\ B R C ) -> C e. _V ) |
5 |
1 4
|
sylan |
|- ( ( R e. PosetRel /\ B R C ) -> C e. _V ) |
6 |
3 5
|
anim12dan |
|- ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> ( ( A e. _V /\ B e. _V ) /\ C e. _V ) ) |
7 |
|
pstr2 |
|- ( R e. PosetRel -> ( R o. R ) C_ R ) |
8 |
|
cotr |
|- ( ( R o. R ) C_ R <-> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) ) |
9 |
7 8
|
sylib |
|- ( R e. PosetRel -> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) ) |
10 |
9
|
adantr |
|- ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) ) |
11 |
|
simpr |
|- ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> ( A R B /\ B R C ) ) |
12 |
|
breq12 |
|- ( ( x = A /\ y = B ) -> ( x R y <-> A R B ) ) |
13 |
12
|
3adant3 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( x R y <-> A R B ) ) |
14 |
|
breq12 |
|- ( ( y = B /\ z = C ) -> ( y R z <-> B R C ) ) |
15 |
14
|
3adant1 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( y R z <-> B R C ) ) |
16 |
13 15
|
anbi12d |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ( x R y /\ y R z ) <-> ( A R B /\ B R C ) ) ) |
17 |
|
breq12 |
|- ( ( x = A /\ z = C ) -> ( x R z <-> A R C ) ) |
18 |
17
|
3adant2 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( x R z <-> A R C ) ) |
19 |
16 18
|
imbi12d |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ( ( x R y /\ y R z ) -> x R z ) <-> ( ( A R B /\ B R C ) -> A R C ) ) ) |
20 |
19
|
spc3gv |
|- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) -> ( ( A R B /\ B R C ) -> A R C ) ) ) |
21 |
20
|
3expa |
|- ( ( ( A e. _V /\ B e. _V ) /\ C e. _V ) -> ( A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) -> ( ( A R B /\ B R C ) -> A R C ) ) ) |
22 |
6 10 11 21
|
syl3c |
|- ( ( R e. PosetRel /\ ( A R B /\ B R C ) ) -> A R C ) |
23 |
22
|
ex |
|- ( R e. PosetRel -> ( ( A R B /\ B R C ) -> A R C ) ) |
24 |
|
psref2 |
|- ( R e. PosetRel -> ( R i^i `' R ) = ( _I |` U. U. R ) ) |
25 |
|
asymref2 |
|- ( ( R i^i `' R ) = ( _I |` U. U. R ) <-> ( A. x e. U. U. R x R x /\ A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) ) |
26 |
25
|
simplbi |
|- ( ( R i^i `' R ) = ( _I |` U. U. R ) -> A. x e. U. U. R x R x ) |
27 |
|
breq12 |
|- ( ( x = A /\ x = A ) -> ( x R x <-> A R A ) ) |
28 |
27
|
anidms |
|- ( x = A -> ( x R x <-> A R A ) ) |
29 |
28
|
rspccv |
|- ( A. x e. U. U. R x R x -> ( A e. U. U. R -> A R A ) ) |
30 |
24 26 29
|
3syl |
|- ( R e. PosetRel -> ( A e. U. U. R -> A R A ) ) |
31 |
3
|
adantrr |
|- ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> ( A e. _V /\ B e. _V ) ) |
32 |
25
|
simprbi |
|- ( ( R i^i `' R ) = ( _I |` U. U. R ) -> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |
33 |
24 32
|
syl |
|- ( R e. PosetRel -> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |
34 |
33
|
adantr |
|- ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> A. x A. y ( ( x R y /\ y R x ) -> x = y ) ) |
35 |
|
simpr |
|- ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> ( A R B /\ B R A ) ) |
36 |
|
breq12 |
|- ( ( y = B /\ x = A ) -> ( y R x <-> B R A ) ) |
37 |
36
|
ancoms |
|- ( ( x = A /\ y = B ) -> ( y R x <-> B R A ) ) |
38 |
12 37
|
anbi12d |
|- ( ( x = A /\ y = B ) -> ( ( x R y /\ y R x ) <-> ( A R B /\ B R A ) ) ) |
39 |
|
eqeq12 |
|- ( ( x = A /\ y = B ) -> ( x = y <-> A = B ) ) |
40 |
38 39
|
imbi12d |
|- ( ( x = A /\ y = B ) -> ( ( ( x R y /\ y R x ) -> x = y ) <-> ( ( A R B /\ B R A ) -> A = B ) ) ) |
41 |
40
|
spc2gv |
|- ( ( A e. _V /\ B e. _V ) -> ( A. x A. y ( ( x R y /\ y R x ) -> x = y ) -> ( ( A R B /\ B R A ) -> A = B ) ) ) |
42 |
31 34 35 41
|
syl3c |
|- ( ( R e. PosetRel /\ ( A R B /\ B R A ) ) -> A = B ) |
43 |
42
|
ex |
|- ( R e. PosetRel -> ( ( A R B /\ B R A ) -> A = B ) ) |
44 |
23 30 43
|
3jca |
|- ( R e. PosetRel -> ( ( ( A R B /\ B R C ) -> A R C ) /\ ( A e. U. U. R -> A R A ) /\ ( ( A R B /\ B R A ) -> A = B ) ) ) |