| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psmetf |  |-  ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) | 
						
							| 2 | 1 | ffnd |  |-  ( D e. ( PsMet ` X ) -> D Fn ( X X. X ) ) | 
						
							| 3 | 1 | ffvelcdmda |  |-  ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> ( D ` a ) e. RR* ) | 
						
							| 4 |  | elxp6 |  |-  ( a e. ( X X. X ) <-> ( a = <. ( 1st ` a ) , ( 2nd ` a ) >. /\ ( ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) ) ) | 
						
							| 5 | 4 | simprbi |  |-  ( a e. ( X X. X ) -> ( ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) ) | 
						
							| 6 |  | psmetge0 |  |-  ( ( D e. ( PsMet ` X ) /\ ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) -> 0 <_ ( ( 1st ` a ) D ( 2nd ` a ) ) ) | 
						
							| 7 | 6 | 3expb |  |-  ( ( D e. ( PsMet ` X ) /\ ( ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) ) -> 0 <_ ( ( 1st ` a ) D ( 2nd ` a ) ) ) | 
						
							| 8 | 5 7 | sylan2 |  |-  ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> 0 <_ ( ( 1st ` a ) D ( 2nd ` a ) ) ) | 
						
							| 9 |  | 1st2nd2 |  |-  ( a e. ( X X. X ) -> a = <. ( 1st ` a ) , ( 2nd ` a ) >. ) | 
						
							| 10 | 9 | fveq2d |  |-  ( a e. ( X X. X ) -> ( D ` a ) = ( D ` <. ( 1st ` a ) , ( 2nd ` a ) >. ) ) | 
						
							| 11 |  | df-ov |  |-  ( ( 1st ` a ) D ( 2nd ` a ) ) = ( D ` <. ( 1st ` a ) , ( 2nd ` a ) >. ) | 
						
							| 12 | 10 11 | eqtr4di |  |-  ( a e. ( X X. X ) -> ( D ` a ) = ( ( 1st ` a ) D ( 2nd ` a ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> ( D ` a ) = ( ( 1st ` a ) D ( 2nd ` a ) ) ) | 
						
							| 14 | 8 13 | breqtrrd |  |-  ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> 0 <_ ( D ` a ) ) | 
						
							| 15 |  | elxrge0 |  |-  ( ( D ` a ) e. ( 0 [,] +oo ) <-> ( ( D ` a ) e. RR* /\ 0 <_ ( D ` a ) ) ) | 
						
							| 16 | 3 14 15 | sylanbrc |  |-  ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> ( D ` a ) e. ( 0 [,] +oo ) ) | 
						
							| 17 | 16 | ralrimiva |  |-  ( D e. ( PsMet ` X ) -> A. a e. ( X X. X ) ( D ` a ) e. ( 0 [,] +oo ) ) | 
						
							| 18 |  | fnfvrnss |  |-  ( ( D Fn ( X X. X ) /\ A. a e. ( X X. X ) ( D ` a ) e. ( 0 [,] +oo ) ) -> ran D C_ ( 0 [,] +oo ) ) | 
						
							| 19 | 2 17 18 | syl2anc |  |-  ( D e. ( PsMet ` X ) -> ran D C_ ( 0 [,] +oo ) ) | 
						
							| 20 |  | df-f |  |-  ( D : ( X X. X ) --> ( 0 [,] +oo ) <-> ( D Fn ( X X. X ) /\ ran D C_ ( 0 [,] +oo ) ) ) | 
						
							| 21 | 2 19 20 | sylanbrc |  |-  ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> ( 0 [,] +oo ) ) |