Step |
Hyp |
Ref |
Expression |
1 |
|
psmetf |
|- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
2 |
1
|
ffnd |
|- ( D e. ( PsMet ` X ) -> D Fn ( X X. X ) ) |
3 |
1
|
ffvelrnda |
|- ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> ( D ` a ) e. RR* ) |
4 |
|
elxp6 |
|- ( a e. ( X X. X ) <-> ( a = <. ( 1st ` a ) , ( 2nd ` a ) >. /\ ( ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) ) ) |
5 |
4
|
simprbi |
|- ( a e. ( X X. X ) -> ( ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) ) |
6 |
|
psmetge0 |
|- ( ( D e. ( PsMet ` X ) /\ ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) -> 0 <_ ( ( 1st ` a ) D ( 2nd ` a ) ) ) |
7 |
6
|
3expb |
|- ( ( D e. ( PsMet ` X ) /\ ( ( 1st ` a ) e. X /\ ( 2nd ` a ) e. X ) ) -> 0 <_ ( ( 1st ` a ) D ( 2nd ` a ) ) ) |
8 |
5 7
|
sylan2 |
|- ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> 0 <_ ( ( 1st ` a ) D ( 2nd ` a ) ) ) |
9 |
|
1st2nd2 |
|- ( a e. ( X X. X ) -> a = <. ( 1st ` a ) , ( 2nd ` a ) >. ) |
10 |
9
|
fveq2d |
|- ( a e. ( X X. X ) -> ( D ` a ) = ( D ` <. ( 1st ` a ) , ( 2nd ` a ) >. ) ) |
11 |
|
df-ov |
|- ( ( 1st ` a ) D ( 2nd ` a ) ) = ( D ` <. ( 1st ` a ) , ( 2nd ` a ) >. ) |
12 |
10 11
|
eqtr4di |
|- ( a e. ( X X. X ) -> ( D ` a ) = ( ( 1st ` a ) D ( 2nd ` a ) ) ) |
13 |
12
|
adantl |
|- ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> ( D ` a ) = ( ( 1st ` a ) D ( 2nd ` a ) ) ) |
14 |
8 13
|
breqtrrd |
|- ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> 0 <_ ( D ` a ) ) |
15 |
|
elxrge0 |
|- ( ( D ` a ) e. ( 0 [,] +oo ) <-> ( ( D ` a ) e. RR* /\ 0 <_ ( D ` a ) ) ) |
16 |
3 14 15
|
sylanbrc |
|- ( ( D e. ( PsMet ` X ) /\ a e. ( X X. X ) ) -> ( D ` a ) e. ( 0 [,] +oo ) ) |
17 |
16
|
ralrimiva |
|- ( D e. ( PsMet ` X ) -> A. a e. ( X X. X ) ( D ` a ) e. ( 0 [,] +oo ) ) |
18 |
|
fnfvrnss |
|- ( ( D Fn ( X X. X ) /\ A. a e. ( X X. X ) ( D ` a ) e. ( 0 [,] +oo ) ) -> ran D C_ ( 0 [,] +oo ) ) |
19 |
2 17 18
|
syl2anc |
|- ( D e. ( PsMet ` X ) -> ran D C_ ( 0 [,] +oo ) ) |
20 |
|
df-f |
|- ( D : ( X X. X ) --> ( 0 [,] +oo ) <-> ( D Fn ( X X. X ) /\ ran D C_ ( 0 [,] +oo ) ) ) |
21 |
2 19 20
|
sylanbrc |
|- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> ( 0 [,] +oo ) ) |