Step |
Hyp |
Ref |
Expression |
1 |
|
psrgrp.s |
|- S = ( I mPwSer R ) |
2 |
|
psrgrp.i |
|- ( ph -> I e. V ) |
3 |
|
psrgrp.r |
|- ( ph -> R e. Grp ) |
4 |
|
psr0.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
5 |
|
psr0.o |
|- O = ( 0g ` R ) |
6 |
|
psr0.z |
|- .0. = ( 0g ` S ) |
7 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
8 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
9 |
1 2 3 4 5 7
|
psr0cl |
|- ( ph -> ( D X. { O } ) e. ( Base ` S ) ) |
10 |
1 2 3 4 5 7 8 9
|
psr0lid |
|- ( ph -> ( ( D X. { O } ) ( +g ` S ) ( D X. { O } ) ) = ( D X. { O } ) ) |
11 |
1 2 3
|
psrgrp |
|- ( ph -> S e. Grp ) |
12 |
7 8 6
|
grpid |
|- ( ( S e. Grp /\ ( D X. { O } ) e. ( Base ` S ) ) -> ( ( ( D X. { O } ) ( +g ` S ) ( D X. { O } ) ) = ( D X. { O } ) <-> .0. = ( D X. { O } ) ) ) |
13 |
11 9 12
|
syl2anc |
|- ( ph -> ( ( ( D X. { O } ) ( +g ` S ) ( D X. { O } ) ) = ( D X. { O } ) <-> .0. = ( D X. { O } ) ) ) |
14 |
10 13
|
mpbid |
|- ( ph -> .0. = ( D X. { O } ) ) |