| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrgrp.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psrgrp.i |  |-  ( ph -> I e. V ) | 
						
							| 3 |  | psrgrp.r |  |-  ( ph -> R e. Grp ) | 
						
							| 4 |  | psr0.d |  |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 5 |  | psr0.o |  |-  O = ( 0g ` R ) | 
						
							| 6 |  | psr0.z |  |-  .0. = ( 0g ` S ) | 
						
							| 7 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 8 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 9 | 1 2 3 4 5 7 | psr0cl |  |-  ( ph -> ( D X. { O } ) e. ( Base ` S ) ) | 
						
							| 10 | 1 2 3 4 5 7 8 9 | psr0lid |  |-  ( ph -> ( ( D X. { O } ) ( +g ` S ) ( D X. { O } ) ) = ( D X. { O } ) ) | 
						
							| 11 | 1 2 3 | psrgrp |  |-  ( ph -> S e. Grp ) | 
						
							| 12 | 7 8 6 | grpid |  |-  ( ( S e. Grp /\ ( D X. { O } ) e. ( Base ` S ) ) -> ( ( ( D X. { O } ) ( +g ` S ) ( D X. { O } ) ) = ( D X. { O } ) <-> .0. = ( D X. { O } ) ) ) | 
						
							| 13 | 11 9 12 | syl2anc |  |-  ( ph -> ( ( ( D X. { O } ) ( +g ` S ) ( D X. { O } ) ) = ( D X. { O } ) <-> .0. = ( D X. { O } ) ) ) | 
						
							| 14 | 10 13 | mpbid |  |-  ( ph -> .0. = ( D X. { O } ) ) |