| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrgrp.s |
|- S = ( I mPwSer R ) |
| 2 |
|
psrgrp.i |
|- ( ph -> I e. V ) |
| 3 |
|
psrgrp.r |
|- ( ph -> R e. Grp ) |
| 4 |
|
psr0cl.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 5 |
|
psr0cl.o |
|- .0. = ( 0g ` R ) |
| 6 |
|
psr0cl.b |
|- B = ( Base ` S ) |
| 7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 8 |
7 5
|
grpidcl |
|- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 9 |
|
fconst6g |
|- ( .0. e. ( Base ` R ) -> ( D X. { .0. } ) : D --> ( Base ` R ) ) |
| 10 |
3 8 9
|
3syl |
|- ( ph -> ( D X. { .0. } ) : D --> ( Base ` R ) ) |
| 11 |
|
fvex |
|- ( Base ` R ) e. _V |
| 12 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 13 |
4 12
|
rabex2 |
|- D e. _V |
| 14 |
11 13
|
elmap |
|- ( ( D X. { .0. } ) e. ( ( Base ` R ) ^m D ) <-> ( D X. { .0. } ) : D --> ( Base ` R ) ) |
| 15 |
10 14
|
sylibr |
|- ( ph -> ( D X. { .0. } ) e. ( ( Base ` R ) ^m D ) ) |
| 16 |
1 7 4 6 2
|
psrbas |
|- ( ph -> B = ( ( Base ` R ) ^m D ) ) |
| 17 |
15 16
|
eleqtrrd |
|- ( ph -> ( D X. { .0. } ) e. B ) |