| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrgrp.s |
|- S = ( I mPwSer R ) |
| 2 |
|
psrgrp.i |
|- ( ph -> I e. V ) |
| 3 |
|
psrgrp.r |
|- ( ph -> R e. Grp ) |
| 4 |
|
psr0cl.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 5 |
|
psr0cl.o |
|- .0. = ( 0g ` R ) |
| 6 |
|
psr0cl.b |
|- B = ( Base ` S ) |
| 7 |
|
psr0lid.p |
|- .+ = ( +g ` S ) |
| 8 |
|
psr0lid.x |
|- ( ph -> X e. B ) |
| 9 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 10 |
1 2 3 4 5 6
|
psr0cl |
|- ( ph -> ( D X. { .0. } ) e. B ) |
| 11 |
1 6 9 7 10 8
|
psradd |
|- ( ph -> ( ( D X. { .0. } ) .+ X ) = ( ( D X. { .0. } ) oF ( +g ` R ) X ) ) |
| 12 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 13 |
4 12
|
rabex2 |
|- D e. _V |
| 14 |
13
|
a1i |
|- ( ph -> D e. _V ) |
| 15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 16 |
1 15 4 6 8
|
psrelbas |
|- ( ph -> X : D --> ( Base ` R ) ) |
| 17 |
5
|
fvexi |
|- .0. e. _V |
| 18 |
17
|
a1i |
|- ( ph -> .0. e. _V ) |
| 19 |
15 9 5
|
grplid |
|- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) x ) = x ) |
| 20 |
3 19
|
sylan |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) x ) = x ) |
| 21 |
14 16 18 20
|
caofid0l |
|- ( ph -> ( ( D X. { .0. } ) oF ( +g ` R ) X ) = X ) |
| 22 |
11 21
|
eqtrd |
|- ( ph -> ( ( D X. { .0. } ) .+ X ) = X ) |