Step |
Hyp |
Ref |
Expression |
1 |
|
psrring.s |
|- S = ( I mPwSer R ) |
2 |
|
psrring.i |
|- ( ph -> I e. V ) |
3 |
|
psrring.r |
|- ( ph -> R e. Ring ) |
4 |
|
psr1.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
5 |
|
psr1.z |
|- .0. = ( 0g ` R ) |
6 |
|
psr1.o |
|- .1. = ( 1r ` R ) |
7 |
|
psr1.u |
|- U = ( 1r ` S ) |
8 |
|
eqid |
|- ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) |
9 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
10 |
1 2 3 4 5 6 8 9
|
psr1cl |
|- ( ph -> ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) e. ( Base ` S ) ) |
11 |
2
|
adantr |
|- ( ( ph /\ y e. ( Base ` S ) ) -> I e. V ) |
12 |
3
|
adantr |
|- ( ( ph /\ y e. ( Base ` S ) ) -> R e. Ring ) |
13 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
14 |
|
simpr |
|- ( ( ph /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) |
15 |
1 11 12 4 5 6 8 9 13 14
|
psrlidm |
|- ( ( ph /\ y e. ( Base ` S ) ) -> ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y ) |
16 |
1 11 12 4 5 6 8 9 13 14
|
psrridm |
|- ( ( ph /\ y e. ( Base ` S ) ) -> ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) |
17 |
15 16
|
jca |
|- ( ( ph /\ y e. ( Base ` S ) ) -> ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) |
18 |
17
|
ralrimiva |
|- ( ph -> A. y e. ( Base ` S ) ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) |
19 |
1 2 3
|
psrring |
|- ( ph -> S e. Ring ) |
20 |
9 13 7
|
isringid |
|- ( S e. Ring -> ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) e. ( Base ` S ) /\ A. y e. ( Base ` S ) ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) <-> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) ) |
21 |
19 20
|
syl |
|- ( ph -> ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) e. ( Base ` S ) /\ A. y e. ( Base ` S ) ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) <-> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) ) |
22 |
10 18 21
|
mpbi2and |
|- ( ph -> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |