| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psrring.i |  |-  ( ph -> I e. V ) | 
						
							| 3 |  | psrring.r |  |-  ( ph -> R e. Ring ) | 
						
							| 4 |  | psr1.d |  |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 5 |  | psr1.z |  |-  .0. = ( 0g ` R ) | 
						
							| 6 |  | psr1.o |  |-  .1. = ( 1r ` R ) | 
						
							| 7 |  | psr1.u |  |-  U = ( 1r ` S ) | 
						
							| 8 |  | eqid |  |-  ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 10 | 1 2 3 4 5 6 8 9 | psr1cl |  |-  ( ph -> ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) e. ( Base ` S ) ) | 
						
							| 11 | 2 | adantr |  |-  ( ( ph /\ y e. ( Base ` S ) ) -> I e. V ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ y e. ( Base ` S ) ) -> R e. Ring ) | 
						
							| 13 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) | 
						
							| 15 | 1 11 12 4 5 6 8 9 13 14 | psrlidm |  |-  ( ( ph /\ y e. ( Base ` S ) ) -> ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y ) | 
						
							| 16 | 1 11 12 4 5 6 8 9 13 14 | psrridm |  |-  ( ( ph /\ y e. ( Base ` S ) ) -> ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) | 
						
							| 17 | 15 16 | jca |  |-  ( ( ph /\ y e. ( Base ` S ) ) -> ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) | 
						
							| 18 | 17 | ralrimiva |  |-  ( ph -> A. y e. ( Base ` S ) ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) | 
						
							| 19 | 1 2 3 | psrring |  |-  ( ph -> S e. Ring ) | 
						
							| 20 | 9 13 7 | isringid |  |-  ( S e. Ring -> ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) e. ( Base ` S ) /\ A. y e. ( Base ` S ) ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) <-> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) e. ( Base ` S ) /\ A. y e. ( Base ` S ) ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) <-> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) ) | 
						
							| 22 | 10 18 21 | mpbi2and |  |-  ( ph -> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |