Metamath Proof Explorer


Theorem psr1bas2

Description: The base set of the ring of univariate power series. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses psr1val.1
|- S = ( PwSer1 ` R )
psr1bas2.b
|- B = ( Base ` S )
psr1bas2.o
|- O = ( 1o mPwSer R )
Assertion psr1bas2
|- B = ( Base ` O )

Proof

Step Hyp Ref Expression
1 psr1val.1
 |-  S = ( PwSer1 ` R )
2 psr1bas2.b
 |-  B = ( Base ` S )
3 psr1bas2.o
 |-  O = ( 1o mPwSer R )
4 1 psr1val
 |-  S = ( ( 1o ordPwSer R ) ` (/) )
5 0ss
 |-  (/) C_ ( 1o X. 1o )
6 5 a1i
 |-  ( T. -> (/) C_ ( 1o X. 1o ) )
7 3 4 6 opsrbas
 |-  ( T. -> ( Base ` O ) = ( Base ` S ) )
8 7 mptru
 |-  ( Base ` O ) = ( Base ` S )
9 2 8 eqtr4i
 |-  B = ( Base ` O )